On constructing efficient UAV aerodynamic surrogate models for digital twins

dc.contributor.authorAláez Gómez, Daniel
dc.contributor.authorPrieto Míguez, Manuel
dc.contributor.authorVilladangos Alonso, Jesús
dc.contributor.authorAstrain Escola, José Javier
dc.contributor.departmentEstadística, Informática y Matemáticases_ES
dc.contributor.departmentEstatistika, Informatika eta Matematikaeu
dc.contributor.departmentInstitute of Smart Cities - ISCen
dc.contributor.funderGobierno de Navarra / Nafarroako Gobernua
dc.date.accessioned2024-11-14T12:10:14Z
dc.date.available2024-11-14T12:10:14Z
dc.date.issued2024-07-31
dc.date.updated2024-11-14T11:55:00Z
dc.description.abstractAerodynamic modeling and optimization for unmanned aerial vehicles (UAVs) are complex and computationally intensive tasks. Surrogate models have emerged as a powerful tool for increasing efficiency in the aircraft design and optimization process. We review and evaluate some modeling techniques, such as artificial neural networks and support vector regression, showing that Gaussian process regression generally provides a well-performing solution to this type of problem. We propose an active learning algorithm based on the relevance factor, that combines bias estimated from nearest-neighbor Euclidean distance and variance, to achieve higher accuracy with fewer compuational fluid dynamics (CFD) simulations. The obtained performance is evaluated using four 2-D test functions and an experimental CFD case, indicating that the proposed active learning approach outperforms classical random sampling techniques. Thanks to this architecture, the development process of a new commercial UAV can be significantly streamlined by expediting the testing phase through the use of DTs modeled more efficiently.en
dc.description.sponsorshipThis work was supported in part by European Union NextGenerationEU/PRTRMCIN/AEI/10.13039/501100011033, Holistic power lines predictive maintenance system under Grant PLEC2021-007997, in part by the CONDOR-Connected under Grant TED2021-131716B-C21 SARA and Grant PID2021-127409OB-C31, and in part by the Government of Navarre (Departamento de Desarrollo Economico) under the research Grant PC109-110 NAITEST. Paper no. TII-24-2116.
dc.format.mimetypeapplication/pdfen
dc.identifier.citationAláez, D., Prieto, M., Villadangos, J., Astrain, J. J. (2024). On constructing efficient UAV aerodynamic surrogate models for digital twins. IEEE Transactions on Industrial Informatics. https://doi.org/10.1109/TII.2024.3431106.
dc.identifier.doi10.1109/TII.2024.3431106
dc.identifier.issn1551-3203
dc.identifier.urihttps://academica-e.unavarra.es/handle/2454/52507
dc.language.isoeng
dc.publisherIEEE
dc.relation.ispartofIEEE Transactions on Industrial Informatics (2024), vol. 20, núm. 11
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PLEC2021-007997/ES/
dc.relation.projectIDinfo:eu-repo/grantAgreement///TED2021-131716B-C21/
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2021-127409OB-C31/ES/
dc.relation.projectIDinfo:eu-repo/grantAgreement/Gobierno de Navarra//PC109-110/
dc.relation.projectIDinfo:eu-repo/grantAgreement/Gobierno de Navarra//TII-24-2116/
dc.relation.publisherversionhttps://doi.org/10.1109/TII.2024.3431106
dc.rights© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectActive learningen
dc.subjectCFDen
dc.subjectGaussian process regression (GPR)en
dc.subjectSurrogate modelen
dc.subjectUnmanned aerial vehicles (UAV)en
dc.titleOn constructing efficient UAV aerodynamic surrogate models for digital twinsen
dc.typeinfo:eu-repo/semantics/article
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dspace.entity.typePublication
relation.isAuthorOfPublicationb271d878-81b4-4aea-918a-e708bf967544
relation.isAuthorOfPublication70e13a05-bb1f-4321-ad39-49810754d6df
relation.isAuthorOfPublicationbbc8cfd2-e8ad-4eec-bf0e-ad22acb246ac
relation.isAuthorOfPublicationf02194ce-06af-4673-82b3-9b96137a08d3
relation.isAuthorOfPublication.latestForDiscoveryb271d878-81b4-4aea-918a-e708bf967544

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Alaez_OnConstructingEfficient.pdf
Size:
2.89 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description: