On the taxonomy of optimization problems under estimation of distribution algorithms

dc.contributor.authorEchegoyen Arruti, Carlos
dc.contributor.authorMendiburu, Alexander
dc.contributor.authorSantana, Roberto
dc.contributor.authorLozano, José Antonio
dc.contributor.departmentEstadística, Informática y Matemáticases_ES
dc.contributor.departmentEstatistika, Informatika eta Matematikaeu
dc.date.accessioned2025-01-17T10:56:38Z
dc.date.available2025-01-17T10:56:38Z
dc.date.issued2013-09-13
dc.date.updated2025-01-17T10:51:07Z
dc.descriptionAcceso cerrado a este documento. No se encuentra disponible para la consulta pública. Depositado en Academica-e para cumplir con los requisitos de evaluación y acreditación académica del autor/a (sexenios, acreditaciones, etc.).es_ES
dc.description.abstractUnderstanding the relationship between a search algorithm and the space of problems is a fundamental issue in the optimization field. In this paper, we lay the foundations to elaborate taxonomies of problems under estimation of distribution algorithms (EDAs). By using an infinite population model and assuming that the selection operator is based on the rank of the solutions, we group optimization problems according to the behavior of the EDA. Throughout the definition of an equivalence relation between functions it is possible to partition the space of problems in equivalence classes in which the algorithm has the same behavior. We show that only the probabilistic model is able to generate different partitions of the set of possible problems and hence, it predetermines the number of different behaviors that the algorithm can exhibit. As a natural consequence of our definitions, all the objective functions are in the same equivalence class when the algorithm does not impose restrictions to the probabilistic model. The taxonomy of problems, which is also valid for finite populations, is studied in depth for a simple EDA that considers independence among the variables of the problem. We provide the sufficient and necessary condition to decide the equivalence between functions and then we develop the operators to describe and count the members of a class. In addition, we show the intrinsic relation between univariate EDAs and the neighborhood system induced by the Hamming distance by proving that all the functions in the same class have the same number of local optima and that they are in the same ranking positions. Finally, we carry out numerical simulations in order to analyze the different behaviors that the algorithm can exhibit for the functions defined over the search space {0,1}^3en
dc.description.sponsorshipThis work has been partially supported by the Saiotek and Research Groups 2007-2012 (IT-242-07) programs (Basque Government), TIN2010-14931 (Spanish Ministry of Science and Innovation) and COMBIOMED network in computational biomedicine (Carlos III Health Institute).
dc.format.mimetypeapplication/pdfen
dc.identifier.citationEchegoyen, C., Mendiburu, A., Santana, R., Lozano, J. A. (2013) On the taxonomy of optimization problems under estimation of distribution algorithms. Evolutionary Computation, 21(3), 471-495. https://doi.org/10.1162/EVCO_a_00095
dc.identifier.doi10.1162/EVCO_a_00095
dc.identifier.issn1063-6560
dc.identifier.urihttps://academica-e.unavarra.es/handle/2454/52983
dc.language.isoeng
dc.publisherMIT Press Journals
dc.relation.ispartofEvolutionary Computation, 21(3), 471-495
dc.relation.projectIDinfo:eu-repo/grantAgreement/MICINN//TIN2010-14931/ES/
dc.relation.publisherversionhttps://doi.org/10.1162/EVCO_a_00095
dc.rights© 2012 by Massachusetts Institute of Technology
dc.rights.accessRightsinfo:eu-repo/semantics/closedAccess
dc.subjectEstimation of distribution algorithmsen
dc.subjectProbabilistic modelsen
dc.subjectFactorizationsen
dc.subjectRank-based selectionen
dc.subjectModel of infinite populationen
dc.subjectEquivalence classesen
dc.subjectTaxonomy of functionsen
dc.subjectNeighborhood systemen
dc.subjectDynamical systemsen
dc.titleOn the taxonomy of optimization problems under estimation of distribution algorithmsen
dc.typeinfo:eu-repo/semantics/article
dspace.entity.typePublication
relation.isAuthorOfPublicationcb45e960-5f19-491c-ba50-555e4ce5f169
relation.isAuthorOfPublication.latestForDiscoverycb45e960-5f19-491c-ba50-555e4ce5f169

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Acceso cerrado.pdf
Size:
136.04 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description: