Android malware activation strategies comparison for dynamic detection

dc.contributor.advisorTFEArmendáriz Íñigo, José Enrique
dc.contributor.advisorTFEFerrante, Alberto
dc.contributor.affiliationEscuela Técnica Superior de Ingenieros Industriales y de Telecomunicaciónes_ES
dc.contributor.affiliationTelekomunikazio eta Industria Ingeniarien Goi Mailako Eskola Teknikoaeu
dc.contributor.affiliationUniversità della Svizzera Italiana (Suiza)it
dc.contributor.authorVitoria Pascual, Alberto
dc.date.accessioned2019-10-02T12:04:13Z
dc.date.available2019-10-02T12:04:13Z
dc.date.issued2019
dc.description.abstractDynamic malware detection is performed by monitoring system parameters at runtime (i.e., behavior of applications is monitored as they run on the system). To collect data necessary for the development of such detection methods, applications need to be run in a controlled environment and malware need to be properly triggered. Some methods are totally random (i.e., the exerciser creates a predefined number of events), while some others are based on GUI models (i.e., generated events are generated by using a library of different user interfaces). Goal of this project is to compare different methods for exercising applications, with the purpose of verifying that there is a significant difference between the methods. The project was performed by using already available malware samples and the comparison was performed by considering results obtained at USI. Results were obtained sufficient to say that there is a difference in some of the features extracted while in others is less significant.en
dc.description.degreeGraduado o Graduada en Ingeniería Informática por la Universidad Pública de Navarraes_ES
dc.description.degreeInformatika Ingeniaritzako Graduatua Nafarroako Unibertsitate Publikoaneu
dc.format.mimetypeapplication/pdfen
dc.identifier.urihttps://academica-e.unavarra.es/handle/2454/35024
dc.language.isoengen
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.subjectAndroiden
dc.subjectMalwareen
dc.subjectDroidboten
dc.subjectDynamic detectionen
dc.subjectLinuxen
dc.titleAndroid malware activation strategies comparison for dynamic detectionen
dc.typeinfo:eu-repo/semantics/bachelorThesis
dspace.entity.typePublication
relation.isAdvisorTFEOfPublication678cdee9-4ff1-467d-a252-7b4ac0c87f13
relation.isAdvisorTFEOfPublication.latestForDiscovery678cdee9-4ff1-467d-a252-7b4ac0c87f13

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
AlbertoVitoria_report_approved.pdf
Size:
535.89 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description: