Publication:
Accurate thermal prediction model for building-integrated photovoltaics systems using guided artificial intelligence algorithms

dc.contributor.authorSerrano-Luján, Lucíaes_ES
dc.contributor.authorToledo, Carloses_ES
dc.contributor.authorColmenar, José Manueles_ES
dc.contributor.authorAbad, Josées_ES
dc.contributor.authorUrbina Yeregui, Antonio
dc.contributor.departmentZientziakeu
dc.contributor.departmentInstitute for Advanced Materials and Mathematics - INAMAT2en
dc.contributor.departmentCienciases_ES
dc.date.accessioned2022-09-07T06:23:20Z
dc.date.available2024-06-01T23:00:09Z
dc.date.issued2022
dc.date.updated2022-09-07T06:11:13Z
dc.description.abstractProgress in development of building-integrated photovoltaic systems is still hindered by the complexity of the physics and materials properties of the photovoltaic (PV) modules and its effect on the thermal behavior of the building. This affects not only the energy generation, as its active function and linked to economic feasibility, but also the thermal insulation of the building as part of the structure's skin. Traditional modeling methods currently presents limitations, including the fact that they do not account for material thermal inertia and that the proposed semi-empirical coefficients do not define all types of technologies, mounting configuration, or climatic conditions. This article presents an artificial intelligence-based approach for predicting the temperature of a poly-crystalline silicon PV module based on local outdoor weather conditions (ambient temperature, solar irradiation, relative outdoor humidity and wind speed) and indoor comfort parameters (indoor temperature and indoor relative humidity) as inputs. A combination of two algorithms (Grammatical Evolution and Differential Evolution) guides to the creation of a customized expression based on the Sandia model. Different data-sets for a fully integrated PV system were tested to demonstrate its performance on three different types of days: sunny, cloudy and diffuse, showing relative errors of less than 4% in all cases and including night time. In comparison to Sandia model, this method reduces the error by up to 11% in conditions of variability of sky over short time intervals (cloudy days).en
dc.description.sponsorshipThis work was supported by Project PID2019-104272RB-C55, funded by Agencia Estatal de Investigación (AEI-MICINN, Spain, including FEDER funds); Spanish MCIU/AEI/FEDER, UE, under grant ref. PGC2018-095322-B-C22; and Comunidad de Madrid Fondos Estructurales de la Unión Europea with grant ref. P2018/TCS-4566. Carlos Toledo is grateful for postdoctoral fellowship 21227/PD/19, Fundación Séneca - Región de Murcia (Spain).en
dc.embargo.lift2024-06-01
dc.embargo.terms2024-06-01
dc.format.mimetypeapplication/pdfen
dc.identifier.citationSerrano-Luján, L.; Toledo, C.; Colmenar, J. M.; Abad, J.; Urbina-Yeregui, A.. (2022). Accurate thermal prediction model for building-integrated photovoltaics systems using guided artificial intelligence algorithms. Applied Energy. 315, .en
dc.identifier.doi10.1016/j.apenergy.2022.119015
dc.identifier.issn0306-2619
dc.identifier.urihttps://academica-e.unavarra.es/handle/2454/43974
dc.language.isoengen
dc.publisherElsevier Ltden
dc.relation.ispartofApplied Energy 315 (2022) 119015
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-104272RB-C55/ES/en
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-095322-B-C22/ES/en
dc.relation.publisherversionhttps://doi.org/10.1016/j.apenergy.2022.119015
dc.rights© 2022 Elsevier Ltd. This manuscript version is made available under the CC-BY-NC-ND 4.0en
dc.rights.accessRightsAcceso abierto / Sarbide irekiaes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessen
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en
dc.subjectBIPVen
dc.subjectDifferential evolutionen
dc.subjectGrammatical evolutionen
dc.subjectMachine learningen
dc.subjectModule temperature estimationen
dc.subjectPV module temperatureen
dc.titleAccurate thermal prediction model for building-integrated photovoltaics systems using guided artificial intelligence algorithmsen
dc.typeArtículo / Artikuluaes
dc.typeinfo:eu-repo/semantics/articleen
dc.type.versionVersión aceptada / Onetsi den bertsioaes
dc.type.versioninfo:eu-repo/semantics/acceptedVersionen
dspace.entity.typePublication
relation.isAuthorOfPublicationb4dc7f62-5824-4def-8434-945c0ca3ca96
relation.isAuthorOfPublication.latestForDiscoveryb4dc7f62-5824-4def-8434-945c0ca3ca96

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Serrano_AccurateThermal_1662468049069_41570.pdf
Size:
5.2 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.78 KB
Format:
Item-specific license agreed to upon submission
Description: