Publication:
High-dimensional order-free multivariate spatial disease mapping

dc.contributor.authorVicente Fuenzalida, Gonzalo
dc.contributor.authorAdin Urtasun, Aritz
dc.contributor.authorGoicoa Mangado, Tomás
dc.contributor.authorUgarte Martínez, María Dolores
dc.contributor.departmentEstadística, Informática y Matemáticases_ES
dc.contributor.departmentEstatistika, Informatika eta Matematikaeu
dc.contributor.departmentInstitute for Advanced Materials and Mathematics - INAMAT2en
dc.contributor.funderUniversidad Pública de Navarra / Nafarroako Unibertsitate Publikoa, PJUPNA2001es
dc.date.accessioned2023-09-14T07:52:26Z
dc.date.available2023-09-14T07:52:26Z
dc.date.issued2023
dc.date.updated2023-09-14T07:41:27Z
dc.description.abstractDespite the amount of research on disease mapping in recent years, the use of multivariate models for areal spatial data remains limited due to difficulties in implementation and computational burden. These problems are exacerbated when the number of areas is very large. In this paper, we introduce an order-free multivariate scalable Bayesian modelling approach to smooth mortality (or incidence) risks of several diseases simultaneously. The proposal partitions the spatial domain into smaller subregions, fits multivariate models in each subdivision and obtains the posterior distribution of the relative risks across the entire spatial domain. The approach also provides posterior correlations among the spatial patterns of the diseases in each partition that are combined through a consensus Monte Carlo algorithm to obtain correlations for the whole study region. We implement the proposal using integrated nested Laplace approximations (INLA) in the R package bigDM and use it to jointly analyse colorectal, lung, and stomach cancer mortality data in Spanish municipalities. The new proposal allows for the analysis of large datasets and yields superior results compared to fitting a single multivariate model. Additionally, it facilitates statistical inference through local homogeneous models, which may be more appropriate than a global homogeneous model when dealing with a large number of areas.en
dc.description.sponsorshipThis work has been supported by the project PID2020-113125RB-I00/MCIN/AEI/10.13039/501100011033. It has also been partially funded by the Public University of Navarra (project PJUPNA2001). Open Access funding provided by Universidad Pública de Navarra.en
dc.format.mimetypeapplication/pdfen
dc.identifier.citationVicente, G., Adin, A., Goicoa, T., & Ugarte, M. D. (2023). High-dimensional order-free multivariate spatial disease mapping. Statistics and Computing, 33(5), 104. https://doi.org/10.1007/s11222-023-10263-xen
dc.identifier.doi10.1007/s11222-023-10263-x
dc.identifier.issn0960-3174
dc.identifier.urihttps://academica-e.unavarra.es/handle/2454/46321
dc.language.isoengen
dc.publisherSpringeren
dc.relation.ispartofStatistics and Computing, (2023) 33:104en
dc.relation.projectIDnfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-113125RB-I00/ES/en
dc.relation.publisherversionhttps://doi.org/10.1007/s11222-023-10263-x
dc.rights© The author(s) 2023. This article is licensed under a Creative Commons Attribution 4.0 International Licenseen
dc.rights.accessRightsAcceso abierto / Sarbide irekiaes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectBayesian inferenceen
dc.subjectHigh-dimensional dataen
dc.subjectScalable modelsen
dc.subjectSpatial epidemiologyen
dc.titleHigh-dimensional order-free multivariate spatial disease mappingen
dc.typeArtículo / Artikuluaes
dc.typeinfo:eu-repo/semantics/articleen
dc.type.versionVersión publicada / Argitaratu den bertsioaes
dc.type.versioninfo:eu-repo/semantics/publishedVersionen
dspace.entity.typePublication
relation.isAuthorOfPublication6f8418c3-eae2-4388-b12a-0690e60d468f
relation.isAuthorOfPublication77ba75f3-a30d-4f01-8cc5-9de6d3a10d8d
relation.isAuthorOfPublicatione87ff19e-9d36-4286-989b-cafd391dff9d
relation.isAuthorOfPublication.latestForDiscovery6f8418c3-eae2-4388-b12a-0690e60d468f

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Vicente_HighdimensionalOrder.pdf
Size:
59.63 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.78 KB
Format:
Item-specific license agreed to upon submission
Description: