Publication:
Review on unmanned aerial vehicle assisted sensor node localization in wireless networks: soft computing approaches

Date

2022

Authors

Annepu, Visalakshi
Sona, Deepika Rani
Ravikumar, Chinthaginjala V.
Bagadi, Kalapraveen
Alibakhshikenari, Mohammad
Althuwayb, Ayman Abdulhadi
Alali, Bader
Virdee, Bal S.
Pau, Giovanni
Dayoub, Iyad

Director

Publisher

IEEE
Acceso abierto / Sarbide irekia
Artículo / Artikulua
Versión publicada / Argitaratu den bertsioa

Project identifier

European Commission/Horizon 2020 Framework Programme/ 801538openaire
AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2021-127409OB-C31
Métricas Alternativas
OpenAlexGoogle Scholar
cited by count

Abstract

Node positioning or localization is a critical requisite for numerous position-based applications of wireless sensor network (WSN). Localization using the unmanned aerial vehicle (UAV) is preferred over localization using fixed terrestrial anchor node (FTAN) because of low implementation complexity and high accuracy. The conventional multilateration technique estimates the position of the unknown node (UN) based on the distance from the anchor node (AN) to UN that is obtained from the received signal strength (RSS) measurement. However, distortions in the propagation medium may yield incorrect distance measurement and as a result, the accuracy of RSS-multilateration is limited. Though the optimization based localization schemes are considered to be a better alternative, the performance of these schemes is not satisfactory if the distortions are non-linear. In such situations, the neural network (NN) architecture such as extreme learning machine (ELM) can be a better choice as it is a highly non-linear classifier. The ELM is even superior over its counterpart NN classifiers like multilayer perceptron (MLP) and radial basis function (RBF) due to its fast and strong learning ability. Thus, this paper provides a comparative review of various soft computing based localization techniques using both FTAN and aerial ANs for better acceptability.

Description

Keywords

Extreme learning machine, Localization, Unmanned aerial vehicles, Wireless sensor networks

Department

Ingeniería Eléctrica, Electrónica y de Comunicación / Institute of Smart Cities - ISC / Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren

Faculty/School

Degree

Doctorate program

item.page.cita

Annepu, V., Sona, D. R., Ravikumar, C. V., Bagadi, K., Alibakhshikenari, M., Althuwayb, A. A., Alali, B., Virdee, B. S., Pau, G., Dayoub, I., See, C. H., & Falcone, F. (2022). Review on unmanned aerial vehicle assisted sensor node localization in wireless networks: Soft computing approaches. IEEE Access, 10, 132875-132894. https://doi.org/10.1109/ACCESS.2022.3230661

item.page.rights

This work is licensed under a Creative Commons Attribution 4.0 License.

Licencia

Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.