Near-zero-index media as electromagnetic ideal fluids

dc.contributor.authorLiberal Olleta, Íñigo
dc.contributor.authorLobet, Michaël
dc.contributor.authorLi, Yue
dc.contributor.authorEngheta, Nader
dc.contributor.departmentIngeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzareneu
dc.contributor.departmentInstitute of Smart Cities - ISCen
dc.contributor.departmentIngeniería Eléctrica, Electrónica y de Comunicaciónes_ES
dc.date.accessioned2021-09-06T12:27:34Z
dc.date.available2021-09-06T12:27:34Z
dc.date.issued2020
dc.description.abstractNear-zero-index (NZI) supercoupling, the transmission of electromagnetic waves inside a waveguide irrespective of its shape, is a counterintuitive wave effect that finds applications in optical interconnects and engineering light-matter interactions. However, there is a limited knowledge on the local properties of the electromagnetic power flow associated with supercoupling phenomena. Here, we theoretically demonstrate that the power flow in two-dimensional (2D) NZI media is fully analogous to that of an ideal fluid. This result opens an interesting connection between NZI electrodynamics and fluid dynamics. This connection is used to explain the robustness of supercoupling against any geometrical deformation, to enable the analysis of the electromagnetic power flow around complex geometries, and to examine the power flow when the medium is doped with dielectric particles. Finally, electromagnetic ideal fluids where the turbulence is intrinsically inhibited might offer interesting technological possibilities, e.g., in the design of optical forces and for optical systems operating under extreme mechanical conditions.en
dc.description.sponsorshipI.L. acknowledges support from Ramón y Cajal Fellowship RYC2018-024123-I and Project RTI2018-093714-J-I00 sponsored by MCIU/AEI/FEDER/UE. N.E. acknowledges partial support from the Vannevar Bush Faculty Fellowship program sponsored by the Basic Research Office of the Assistant Secretary of Defense for Research and Engineering and funded by the Office of Naval Research through Grant N00014-16-1-2029.en
dc.format.extent5 p.
dc.format.mimetypeapplication/pdfen
dc.identifier.doi10.1073/pnas.2008143117
dc.identifier.issn0027-8424
dc.identifier.urihttps://academica-e.unavarra.es/handle/2454/40431
dc.language.isoengen
dc.publisherNational Academy of Sciencesen
dc.relation.ispartofPNAS September 29, 2020 117 (39) 24050-24054en
dc.relation.projectIDinfo:eu-repo/grantAgreement/MICIU/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RYC2018-024123-I/
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-093714-J-I00/ES/
dc.relation.publisherversionhttps://doi.org/10.1073/pnas.2008143117
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.subjectFluid dynamicsen
dc.subjectMetamaterialsen
dc.subjectNanophotonicsen
dc.subjectNear-zero-index mediaen
dc.titleNear-zero-index media as electromagnetic ideal fluidsen
dc.typeinfo:eu-repo/semantics/article
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dspace.entity.typePublication
relation.isAuthorOfPublication781ff0dc-60db-4bd0-bef0-49e27c76b542
relation.isAuthorOfPublication.latestForDiscovery781ff0dc-60db-4bd0-bef0-49e27c76b542

Files

Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2021020259_Liberal_NearZero.pdf
Size:
2.53 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2021020259_Liberal_NearZero_MatCompl.pdf
Size:
1.45 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description: