Low-cost Titania-Hydroxyapatite (TiHAp) nanocomposites were synthesized for removal of methylene blue under solar and UV irradiation
Date
Authors
Director
Publisher
Project identifier
Impacto
Abstract
Water pollution from industrial dyes like methylene blue (MB) poses significant environmental and health risks due to their toxicity and persistence. In this study, we synthesized a novel titania-hydroxyapatite (TiHAp) nanocomposite via a low-cost, scalable sol-gel method to address these challenges. The composite was comprehensively characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) surface area analysis, Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). Photocatalytic degradation of MB under both solar and UV irradiation was evaluated using kinetic (pseudo-first-order and pseudo-second-order) and isotherm (Langmuir and Freundlich) models, demonstrating hydroxyapatite's key role in enhancing adsorption and facilitating effective interactions with the catalyst. Under optimized conditions, the TiHAp nanocomposite achieved 96.58 % degradation of MB at an initial concentration of 120 mg/L and retained over 95 % activity after five reuse cycles. These results illustrate that the synergistic combination of TiO₂'s photocatalytic activity and HAp's adsorptive capacity produces a highly effective composite for degrading organic pollutants. The study underscores the potential of TiHAp nanocomposites as sustainable materials for wastewater treatment applications, while future work will explore their performance against a broader range of contaminants under realistic environmental conditions.
Description
Keywords
Department
Faculty/School
Degree
Doctorate program
item.page.cita
item.page.rights
© 2025 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license.
Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.