Estimation of patient flow in hospitals using up-to-date data: application to bed demand prediction during pandemic waves

dc.contributor.authorGarcía de Vicuña Bilbao, Daniel
dc.contributor.authorLópez-Cheda, Ana
dc.contributor.authorJácome, María Amalia
dc.contributor.authorMallor Giménez, Fermín
dc.contributor.departmentInstitute of Smart Cities - ISCen
dc.date.accessioned2023-08-22T07:23:53Z
dc.date.available2023-08-22T07:23:53Z
dc.date.issued2023
dc.date.updated2023-08-22T07:00:46Z
dc.description.abstractHospital bed demand forecast is a first-order concern for public health action to avoid healthcare systems to be overwhelmed. Predictions are usually performed by estimating patients flow, that is, lengths of stay and branching probabilities. In most approaches in the literature, estimations rely on not updated published information or historical data. This may lead to unreliable estimates and biased forecasts during new or non-stationary situations. In this paper, we introduce a flexible adaptive procedure using only near-real-time information. Such method requires handling censored information from patients still in hospital. This approach allows the efficient estimation of the distributions of lengths of stay and probabilities used to represent the patient pathways. This is very relevant at the first stages of a pandemic, when there is much uncertainty and too few patients have completely observed pathways. Furthermore, the performance of the proposed method is assessed in an extensive simulation study in which the patient flow in a hospital during a pandemic wave is modelled. We further discuss the advantages and limitations of the method, as well as potential extensions.en
dc.description.sponsorshipDGV and FM acknowledge the support by grant PID2020-114031RB-I00 (AEI, FEDER EU) and by the Government of Navarre, 0011-3597-2020-000003 (COVID). ALC was sponsored by the BEATRIZ GALINDO JUNIOR Spanish Grant from MICINN (Ministerio de Ciencia e Innovación) with code BGP18/00154. ALC and MAJ acknowledge partial support by the MICINN Grant PID2020-113578RB-I00 and partial support of Xunta de Galicia (Grupos de Referencia Competitiva ED431C-2020-14). ALC and MJ wish to acknowledge the support received from the Centro de Investigación de Galicia "CITIC", funded by Xunta de Galicia and the European Union European Regional Development Fund (ERDF)-Galicia 2014-2020 Program, by grant ED431G 2019/01.en
dc.format.mimetypeapplication/pdfen
dc.identifier.citationGarcia-Vicuña, D., López-Cheda, A., Jácome, M. A., & Mallor, F. (2023). Estimation of patient flow in hospitals using up-to-date data. Application to bed demand prediction during pandemic waves. PLOS ONE, 18(2), e0282331. https://doi.org/10.1371/journal.pone.0282331en
dc.identifier.doi10.1371/journal.pone.0282331
dc.identifier.issn1932-6203
dc.identifier.urihttps://academica-e.unavarra.es/handle/2454/46007
dc.language.isoengen
dc.publisherPublic Library of Scienceen
dc.relation.ispartofPLoS ONE, 18(2): e0282331en
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-114031RB-I00/ES/
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-113578RB-I00/ES/
dc.relation.projectIDinfo:eu-repo/grantAgreement/Gobierno de Navarra//0011-3597-2020-000003/
dc.relation.publisherversionhttps://doi.org/10.1371/journal.pone.0282331
dc.rights© 2023 Garcia-Vicuña et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.en
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectPatient flowen
dc.subjectHospital bed demanden
dc.subjectPredictionen
dc.titleEstimation of patient flow in hospitals using up-to-date data: application to bed demand prediction during pandemic wavesen
dc.typeinfo:eu-repo/semantics/article
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dspace.entity.typePublication
relation.isAuthorOfPublication4f90710e-28b4-4d41-af38-f0608ac834ab
relation.isAuthorOfPublication7c01f74d-0369-4f57-b8c2-c6c579b76b38
relation.isAuthorOfPublication.latestForDiscovery4f90710e-28b4-4d41-af38-f0608ac834ab

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
GArcia_EstimationPatient.pdf
Size:
2.52 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.78 KB
Format:
Item-specific license agreed to upon submission
Description: