Publication:
Cognitive systems for the energy efficiency industry

Date

2024

Authors

Flor Montalvo, Francisco Javier
Pérez-Parte, Mercedes
Blanco Fernández, Julio

Director

Publisher

MDPI
Acceso abierto / Sarbide irekia
Artículo / Artikulua
Versión publicada / Argitaratu den bertsioa

Project identifier

Métricas Alternativas

Abstract

This review underscores the pivotal role of Cognitive Systems (CS) in enhancing energy efficiency within the industrial sector, exploring the application of sophisticated algorithms, data analytics, and machine learning techniques to the real-time optimization of energy consumption. This methodology has the potential to reduce operational expenses and further diminish environmental repercussions; however, it also leverages data-driven insights and predictive maintenance to foresee equipment malfunctions and modulate energy utilization accordingly. The viability of integrating renewable energy sources is emphasized, supporting a transition towards sustainability. Furthermore, this research includes a bibliometric literature analysis from the past decade on the deployment of CS and Artificial Intelligence in enhancing industrial energy efficiency.

Description

Keywords

Artificial consciousness, Cognitive computing applications, Cognitive systems, Energy efficiency industry

Department

Ingeniería / Ingeniaritza

Faculty/School

Degree

Doctorate program

item.page.cita

Arevalo, J., Latorre-Biel, J. I., Flor-Montalvo, F.-J., Perez-Parte, M., Blanco, J. (2024) Cognitive systems for the energy efficiency industry. Energies, 17(8), 1-16. https://doi.org/10.3390/en17081860.

item.page.rights

© 2024 by the authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.

Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.