Publication:
Jordan 3-graded Lie algebras with polynomial identities

Date

2024

Authors

Montaner, Fernando

Director

Publisher

Elsevier
Acceso abierto / Sarbide irekia
Artículo / Artikulua
Versión publicada / Argitaratu den bertsioa

Project identifier

AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2021-123461NB-C21/ES/recolecta
Métricas Alternativas

Abstract

We study Jordan 3-graded Lie algebras satisfying 3-graded polynomial identities. Taking advantage of the Tits-Kantor-Koecher construction, we interpret the PI-condition in terms of their associated Jordan pairs, which allows us to formulate an analogue of Posner-Rowen Theorem for strongly prime PI Jordan 3-graded Lie algebras. Arbitrary PI Jordan 3-graded Lie algebras are also described by introducing the Kostrikin radical of the Lie algebras.

Description

Keywords

Central closure, Jordan Lie algebra, Polynomial identity, TKK-construction

Department

Estadística, Informática y Matemáticas / Estatistika, Informatika eta Matematika

Faculty/School

Degree

Doctorate program

item.page.cita

Montaner, F., Paniello, I. (2024) Jordan 3-graded Lie algebras with polynomial identities. Journal of Pure and Applied Algebra, 228(4), 1-18. https://doi.org/10.1016/j.jpaa.2023.107543.

item.page.rights

© 2024 The Authors. This is an open access article under the CC BY-NC license.

Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.