Publication: Jordan 3-graded Lie algebras with polynomial identities
Date
2024
Authors
Montaner, Fernando
Director
Publisher
Elsevier
Acceso abierto / Sarbide irekia
Artículo / Artikulua
Versión publicada / Argitaratu den bertsioa
Métricas Alternativas
Abstract
We study Jordan 3-graded Lie algebras satisfying 3-graded polynomial identities. Taking advantage of the Tits-Kantor-Koecher construction, we interpret the PI-condition in terms of their associated Jordan pairs, which allows us to formulate an analogue of Posner-Rowen Theorem for strongly prime PI Jordan 3-graded Lie algebras. Arbitrary PI Jordan 3-graded Lie algebras are also described by introducing the Kostrikin radical of the Lie algebras.
Description
Keywords
Central closure, Jordan Lie algebra, Polynomial identity, TKK-construction
Department
Estadística, Informática y Matemáticas / Estatistika, Informatika eta Matematika
Faculty/School
Degree
Doctorate program
item.page.cita
Montaner, F., Paniello, I. (2024) Jordan 3-graded Lie algebras with polynomial identities. Journal of Pure and Applied Algebra, 228(4), 1-18. https://doi.org/10.1016/j.jpaa.2023.107543.
item.page.rights
© 2024 The Authors. This is an open access article under the CC BY-NC license.
Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.