Publication:
Improving the performance of fuzzy rule-based classification systems with interval-valued fuzzy sets and genetic amplitude tuning

dc.contributor.authorSanz Delgado, José Antonio
dc.contributor.authorFernández, Alberto
dc.contributor.authorBustince Sola, Humberto
dc.contributor.authorHerrera, Francisco
dc.contributor.departmentAutomática y Computaciónes_ES
dc.contributor.departmentAutomatika eta Konputazioaeu
dc.date.accessioned2015-07-27T09:43:12Z
dc.date.available2015-07-27T09:43:12Z
dc.date.issued2010
dc.description.abstractAmong the computational intelligence techniques employed to solve classification problems, Fuzzy Rule-Based Classification Systems (FRBCSs) are a popular tool because of their interpretable models based on linguistic variables, which are easier to understand for the experts or end-users. The aim of this paper is to enhance the performance of FRBCSs by extending the Knowledge Base with the application of the concept of Interval-Valued Fuzzy Sets (IVFSs). We consider a post-processing genetic tuning step that adjusts the amplitude of the upper bound of the IVFS to contextualize the fuzzy partitions and to obtain a most accurate solution to the problem. We analyze the goodness of this approach using two basic and well-known fuzzy rule learning algorithms, the Chi et al.’s method and the fuzzy hybrid genetics-based machine learning algorithm. We show the improvement achieved by this model through an extensive empirical study with a large collection of data-sets.en
dc.description.sponsorshipThis work has been supported by the Spanish Ministry of Science and Technology under projects TIN2008-06681-C06-01 and TIN2007-65981.en
dc.format.mimetypeapplication/pdfen
dc.identifier.doi10.1016/j.ins.2010.06.018
dc.identifier.issn0020-0255
dc.identifier.urihttps://academica-e.unavarra.es/handle/2454/17683
dc.language.isoengen
dc.publisherElsevieren
dc.relation.ispartofInformation Sciences 180 (2010) 3674–3685en
dc.relation.publisherversionhttps://dx.doi.org/10.1016/j.ins.2010.06.018
dc.rights© 2010 Elsevier Inc. The manuscript version is made available under the CC BY-NC-ND 4.0 licenseen
dc.rights.accessRightsAcceso abierto / Sarbide irekiaes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessen
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectFuzzy rule-based classification systemsen
dc.subjectInterval-valued fuzzy setsen
dc.subjectTuningen
dc.subjectGenetic algorithmsen
dc.titleImproving the performance of fuzzy rule-based classification systems with interval-valued fuzzy sets and genetic amplitude tuningen
dc.typeArtículo / Artikuluaes
dc.typeinfo:eu-repo/semantics/articleen
dc.type.versionVersión aceptada / Onetsi den bertsioaes
dc.type.versioninfo:eu-repo/semantics/acceptedVersionen
dspace.entity.typePublication
relation.isAuthorOfPublication04db2b7d-89dc-4815-be4a-4b201cdce99b
relation.isAuthorOfPublication1bdd7a0e-704f-48e5-8d27-4486444f82c9
relation.isAuthorOfPublication.latestForDiscovery04db2b7d-89dc-4815-be4a-4b201cdce99b

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
INS_2010_Aceptada.pdf
Size:
217.39 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.78 KB
Format:
Item-specific license agreed to upon submission
Description: