Hyperspectrum comparison using similarity measures

dc.contributor.authorLópez Molina, Carlos
dc.contributor.authorMarco Detchart, Cedric
dc.contributor.authorBustince Sola, Humberto
dc.contributor.authorFernández Fernández, Francisco Javier
dc.contributor.authorLópez Maestresalas, Ainara
dc.contributor.authorAyala Martini, Daniela
dc.contributor.departmentAutomática y Computaciónes_ES
dc.contributor.departmentAutomatika eta Konputazioaeu
dc.contributor.departmentProyectos e Ingeniería Rurales_ES
dc.contributor.departmentLanda Ingeniaritza eta Proiektuakeu
dc.date.accessioned2025-04-09T11:04:42Z
dc.date.available2025-04-09T11:04:42Z
dc.date.issued2017-08-31
dc.date.updated2025-04-09T10:54:42Z
dc.description.abstractSimilarity measures, as studied in the context of fuzzy set theory, have been proven applicable to many different fields. Surely, their primary role is to model the perceived (dis-) similarity between two fuzzy sets or, equivalently, the linguistic terms they represent. However, the richness of the dedicated study makes the similarity measures portable to other contexts in which quantitative comparison plays a key role. In this work we present the application of similarity measures to hyperspectrum comparison in the context of in-lab hyperspectral imaging for bioengineering.en
dc.description.sponsorshipThis work was supported by the National Institute for Agricultural and Food Research and Technology (INIA), Project RTA2013-00006-C03-03. Also by the Spanish Ministry of Science, Project TIN2016-77356-P (FEDER/UE, AEI).
dc.format.mimetypeapplication/pdfen
dc.identifier.citationLópez-Molina, C., Marco-Detchart, C., Bustince, H., Fernández, J., López-Maestresalas, A., Ayala-Martini, D. (2017) Hyperspectrum comparison using similarity measures. In Hayashi, I., Díaz I., 2017 Joint 17th World Congress of International Fuzzy Systems Association and 9th International Conference on Soft Computing and Intelligent Systems (IFSA-SCIS) (pp. 1-6). IEEE. https://doi.org/10.1109/IFSA-SCIS.2017.8023259
dc.identifier.doi10.1109/IFSA-SCIS.2017.8023259
dc.identifier.isbn978-1-5090-4917-2
dc.identifier.urihttps://academica-e.unavarra.es/handle/2454/53919
dc.language.isoeng
dc.publisherIEEE
dc.relation.ispartofIn Hayashi, I.; Díaz, I. (2017) 2017 Joint 17th World Congress of International Fuzzy Systems Association and 9th International Conference on Soft Computing and Intelligent Systems (IFSA-SCIS). (pp. 1-6) IEEE
dc.relation.projectIDinfo:eu-repo/grantAgreement/MINECO//RTA2013-00006-C03-03/ES/
dc.relation.projectIDinfo:eu-repo/grantAgreement/MINECO//TIN2016-77356-P/
dc.relation.publisherversionhttps://doi.org/10.1109/IFSA-SCIS.2017.8023259
dc.rights© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other work.
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.subjectHyperspectral imagingen
dc.subjectFuzzy setsen
dc.subjectFuzzy set theoryen
dc.subjectPsychologyen
dc.subjectWavelength measurementen
dc.subjectPragmaticsen
dc.titleHyperspectrum comparison using similarity measuresen
dc.typeinfo:eu-repo/semantics/conferenceObject
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dspace.entity.typePublication
relation.isAuthorOfPublicationb1df82f9-2ce4-488f-afe0-98e7f27ece58
relation.isAuthorOfPublicationa5f4053a-a8c2-41e3-91c2-2b9dad6a72fd
relation.isAuthorOfPublication1bdd7a0e-704f-48e5-8d27-4486444f82c9
relation.isAuthorOfPublication741321a5-40af-41aa-bacb-5da283dd18ab
relation.isAuthorOfPublicationbc607da1-a1ab-4216-be92-08409b033643
relation.isAuthorOfPublication.latestForDiscoveryb1df82f9-2ce4-488f-afe0-98e7f27ece58

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Lopez_Hyperspectrum.pdf
Size:
941.64 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description: