Multidirectional bending sensor using capillary fibers and machine learning for real-time applications

dc.contributor.authorVanegas Tenezaca, Evelyn Dayanara
dc.contributor.authorGalarza Galarza, Marko
dc.contributor.authorDauliat, Romain
dc.contributor.authorJamier, Raphael
dc.contributor.authorRoy, Philippe
dc.contributor.authorLópez-Amo Sáinz, Manuel
dc.contributor.departmentIngeniería Eléctrica, Electrónica y de Comunicaciónes_ES
dc.contributor.departmentIngeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritzaeu
dc.contributor.departmentInstitute of Smart Cities - ISCen
dc.contributor.funderUniversidad Publica de Navarra / Nafarroako Unibertsitate Publikoa
dc.date.accessioned2025-06-24T17:31:28Z
dc.date.available2025-06-24T17:31:28Z
dc.date.issued2025-02-25
dc.date.updated2025-06-24T17:17:07Z
dc.description.abstractIn this article, the design and implementation of a bidirectional curvature sensor based on a fiber-optic interferometer are presented. The sensor structure was fabricated by fusing a capillary fiber fragment between single-mode fibers (SMFs), with the addition of a long end capillary to promote a long interferometric section, forming a Fabry-Perot (FP) cavity. Detailed analysis of the curvature data was carried out using machine learning techniques, allowing accurate classification of curvature in both directions of rotation. The experimental results showed excellent agreement (R2: 0.9998) with the predicted values. The sensor exhibits a maximum error of 1.9485°. This approach presents significant potential for applications requiring accurate real-time curvature measurements.en
dc.description.sponsorshipThis work was supported in part by CIN/AEI/10.13039/501100011033 and FEDER "AWay to Make Europe" under Project PID2022-137269OB and in part by MCIN/AEI/10.13039/501100011033 and European Union "Next Generation EU"/PRTR under Project TED2021-130378B. Open access funding provided by Universidad Publica de Navarra.
dc.format.mimetypeapplication/pdf
dc.identifier.citationVanegas-Tenezaca, E., Galarza, M., Dauliat, R., Jamier, R., Roy, P., Lopez-Amo, M. (2025) Multidirectional bending sensor using capillary fibers and machine learning for real-time applications. IEEE Sensors Journal, 25(8), 12734-12741. https://doi.org/10.1109/JSEN.2025.3543700.
dc.identifier.doi10.1109/JSEN.2025.3543700
dc.identifier.issn1530-437X
dc.identifier.urihttps://academica-e.unavarra.es/handle/2454/54309
dc.language.isoeng
dc.publisherIEEE
dc.relation.ispartofIEEE Sensors Journal 25(8), 2025, 12734-12741
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2022-137269OB-C21/ES/
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI//TED2021-130378B/
dc.relation.publisherversionhttps://doi.org/10.1109/JSEN.2025.3543700
dc.rights© 2025 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectBenden
dc.subjectCapillary fiberen
dc.subjectCurvatureen
dc.subjectMachine learningen
dc.subjectOptical fiber sensoren
dc.titleMultidirectional bending sensor using capillary fibers and machine learning for real-time applicationsen
dc.typeinfo:eu-repo/semantics/article
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dspace.entity.typePublication
relation.isAuthorOfPublication74128c8c-a1be-47ae-88a9-3990697ba10a
relation.isAuthorOfPublicationa3781686-7980-4c0b-b3b7-b943927a668d
relation.isAuthorOfPublication265f9852-fc76-4fec-92fd-dc27f4daddc0
relation.isAuthorOfPublication.latestForDiscovery74128c8c-a1be-47ae-88a9-3990697ba10a

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Vanegas_Multidirectional.pdf
Size:
1.86 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description: