Large-scale unsupervised spatio-temporal semantic analysis of vast regions from satellite images sequences

Date

2024

Director

Publisher

Springer
Acceso abierto / Sarbide irekia
Artículo / Artikulua
Versión publicada / Argitaratu den bertsioa

Project identifier

  • AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-113125RB-I00/ES/ recolecta
Impacto

Abstract

Temporal sequences of satellite images constitute a highly valuable and abundant resource for analyzing regions of interest. However, the automatic acquisition of knowledge on a large scale is a challenging task due to different factors such as the lack of precise labeled data, the definition and variability of the terrain entities, or the inherent complexity of the images and their fusion. In this context, we present a fully unsupervised and general methodology to conduct spatio-temporal taxonomies of large regions from sequences of satellite images. Our approach relies on a combination of deep embeddings and time series clustering to capture the semantic properties of the ground and its evolution over time, providing a comprehensive understanding of the region of interest. The proposed method is enhanced by a novel procedure specifically devised to refine the embedding and exploit the underlying spatio-temporal patterns. We use this methodology to conduct an in-depth analysis of a 220 km region in northern Spain in different settings. The results provide a broad and intuitive perspective of the land where large areas are connected in a compact and well-structured manner, mainly based on climatic, phytological, and hydrological factors.

Description

Keywords

Clustering, Deep learning, Satellite images, Semantic embeddings, Time series, Unsupervised learning

Department

Estadística, Informática y Matemáticas / Estatistika, Informatika eta Matematika / Institute for Advanced Materials and Mathematics - INAMAT2

Faculty/School

Degree

Doctorate program

item.page.cita

Echegoyen, C., Pérez, A., Santafé, G., Pérez-Goya, U., & Ugarte, M. D. (2024). Large-scale unsupervised spatio-temporal semantic analysis of vast regions from satellite images sequences. Statistics and Computing, 34(2), 71. https://doi.org/10.1007/s11222-024-10383-y

item.page.rights

© The Author(s) 2024. This article is licensed under a Creative Commons Attribution 4.0 International License.

Licencia

Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.