Publication:
Hyperspectral system trade-offs for illumination, hardware and analysis methods: a case study of seed mix ingredient discrimination

dc.contributor.authorBlanch Pérez del Notario, Carolina
dc.contributor.authorLópez Molina, Carlos
dc.contributor.authorLambrechts, Andy
dc.contributor.authorSaeys, Wouter
dc.contributor.departmentEstadística, Informática y Matemáticases_ES
dc.contributor.departmentEstatistika, Informatika eta Matematikaeu
dc.date.accessioned2021-06-14T11:17:38Z
dc.date.available2021-06-14T11:17:38Z
dc.date.issued2020
dc.descriptionIncluye material complementarioes_ES
dc.description.abstractThe discrimination power of a hyperspectral imaging system for image segmentation or object detection is determined by the illumination, the camera spatial–spectral resolution, and both the pre-processing and analysis methods used for image processing. In this study, we methodically reviewed the alternatives for each of those factors for a case study from the food industry to provide guidance in the construction and configuration of hyperspectral imaging systems in the visible near infrared range for food quality inspection. We investigated both halogen-and LED-based illuminations and considered cameras with different spatial–spectral resolution trade-offs. At the level of the data analysis, we evaluated the impact of binning, median filtering and bilateral filtering as pre-or post-processing and compared pixel-based classifiers with convolutional neural networks for a challenging application in the food industry, namely ingredient identification in a flour–seed mix. Starting from a basic configuration and by modifying the combination of system aspects we were able to increase the mean accuracy by at least 25%. In addition, different trade-offs in performance-complexity were identified for different combinations of system parameters, allowing adaptation to diverse application requirements.en
dc.description.sponsorshipThis work was carried out in the context of the iFAST project with the support from Flanders’ FOOD and VLAIO (Agentschap Innoveren & Ondernemen), research and innovation program under grant agreement No. 140992.en
dc.format.extent17 p.
dc.format.mimetypeapplication/pdfen
dc.identifier.doi10.1255/jsi.2020.a16
dc.identifier.issn2040-4565
dc.identifier.urihttps://academica-e.unavarra.es/handle/2454/39913
dc.language.isoengen
dc.publisherIM Publicationsen
dc.relation.ispartofJournal of Spectral Imaging, g 9, a16 (2020)en
dc.relation.publisherversionhttps://doi.org/10.1255/jsi.2020.a16
dc.rights© 2020 The Authors. This work is licensed under a Creative Commons BY-NC-ND Licence.en
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessen
dc.rights.accessRightsAcceso abierto / Sarbide irekiaes
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectClassification accuracyen
dc.subjectConvolutional neural networksen
dc.subjectHyperspectralen
dc.subjectIlluminationen
dc.subjectPre-and post-processingen
dc.subjectSpatial–spectral resolutionen
dc.subjectSystem parametersen
dc.titleHyperspectral system trade-offs for illumination, hardware and analysis methods: a case study of seed mix ingredient discriminationen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeArtículo / Artikuluaes
dc.type.versioninfo:eu-repo/semantics/publishedVersionen
dc.type.versionVersión publicada / Argitaratu den bertsioaes
dspace.entity.typePublication
relation.isAuthorOfPublicationb1df82f9-2ce4-488f-afe0-98e7f27ece58
relation.isAuthorOfPublication.latestForDiscoveryb1df82f9-2ce4-488f-afe0-98e7f27ece58

Files

Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2021020066_Blanch_HyperspectralSystem.pdf
Size:
1.16 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
20212021020066_Blanch_HyperspectralSystem_MatCompl.pdf
Size:
160.97 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description: