Estimating peanut and soybean photosynthetic traits using leaf spectral reflectance and advance regression models

dc.contributor.authorBuchaillot, María Luisa
dc.contributor.authorSoba Hidalgo, David
dc.contributor.authorShu, Tianchu
dc.contributor.authorLiu, Juan
dc.contributor.authorAranjuelo Michelena, Iker
dc.contributor.authorAraus, José Luis
dc.contributor.authorRunion, G. Brett
dc.contributor.authorPrior, Stephen A.
dc.contributor.authorKefauver, Shawn C.
dc.contributor.authorSanz Sáez, Álvaro
dc.contributor.departmentIdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutuaes_ES
dc.date.accessioned2022-09-26T08:24:13Z
dc.date.available2022-09-26T08:24:13Z
dc.date.issued2022
dc.date.updated2022-09-26T08:06:09Z
dc.description.abstractOne proposed key strategy for increasing potential crop stability and yield centers on exploitation of genotypic variability in photosynthetic capacity through precise high-throughput phenotyping techniques. Photosynthetic parameters, such as the maximum rate of Rubisco catalyzed carboxylation (Vc,max) and maximum electron transport rate supporting RuBP regeneration (Jmax), have been identified as key targets for improvement. The primary techniques for measuring these physiological parameters are very time-consuming. However, these parameters could be estimated using rapid and non-destructive leaf spectroscopy techniques. This study compared four different advanced regression models (PLS, BR, ARDR, and LASSO) to estimate Vc,max and Jmax based on leaf reflectance spectra measured with an ASD FieldSpec4. Two leguminous species were tested under different controlled environmental conditions: (1) peanut under different water regimes at normal atmospheric conditions and (2) soybean under high [CO2] and high night temperature. Model sensitivities were assessed for each crop and treatment separately and in combination to identify strengths and weaknesses of each modeling approach. Regardless of regression model, robust predictions were achieved for Vc,max (R2 = 0.70) and Jmax (R2 = 0.50). Field spectroscopy shows promising results for estimating spatial and temporal variations in photosynthetic capacity based on leaf and canopy spectral properties.en
dc.description.sponsorshipThis research was supported by the Action CA17134 SENSECO (Optical Synergies for Spatiotemporal Sensing of Scalable Ecophysiological Traits) funded by COST (European Cooperation in Science and Technology, www.cost.eu ). This research was also supported by Auburn University and Alabama Agricultural Experimental Station Seed Grant. Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Natureen
dc.format.mimetypeapplication/pdfen
dc.format.mimetypeapplication/msworden
dc.identifier.citationBuchaillot, M.L., Soba, D., Shu, T. et al. Estimating peanut and soybean photosynthetic traits using leaf spectral reflectance and advance regression models. Planta 255, 93 (2022).en
dc.identifier.doi10.1007/s00425-022-03867-6
dc.identifier.issn0032-0935
dc.identifier.urihttps://academica-e.unavarra.es/handle/2454/44117
dc.language.isoengen
dc.publisherSpringeren
dc.relation.ispartofPlanta, 2022, vol. 255 (4)en
dc.relation.publisherversionhttps://doi.org/10.1007/s00425-022-03867-6
dc.rights© The Author(s) 2022. This article is licensed under a Creative Commons Attribution 4.0 International Licenseen
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectAdvanced regression modelsen
dc.subjectARDRen
dc.subjectBayesian ridge modelen
dc.subjectHigh-throughput phenotypingen
dc.subjectJmaxen
dc.subjectLassoen
dc.subjectLeaf reflectanceen
dc.subjectPeanuten
dc.subjectPhotosynthesisen
dc.subjectPLSen
dc.subjectSoybeanen
dc.subjectVc,maxen
dc.titleEstimating peanut and soybean photosynthetic traits using leaf spectral reflectance and advance regression modelsen
dc.typeinfo:eu-repo/semantics/article
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dspace.entity.typePublication
relation.isAuthorOfPublication51fd2a96-346c-4a91-b6d5-74ca031ba457
relation.isAuthorOfPublicationb8dd84ae-83ed-4e3f-873e-b0023505b3df
relation.isAuthorOfPublication.latestForDiscovery51fd2a96-346c-4a91-b6d5-74ca031ba457

Files

Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
Buchaillot_EstimatingPeanut_1659939312307_41678.pdf
Size:
3.12 MB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
Buchaillot_EstimatingPeanut_MatCompl.docx
Size:
1.15 MB
Format:
Microsoft Word XML
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.78 KB
Format:
Item-specific license agreed to upon submission
Description: