An efficient uniformly convergent method for multi-scaled two dimensional parabolic singularly perturbed systems of convection-diffusion type

dc.contributor.authorClavero, Carmelo
dc.contributor.authorJorge Ulecia, Juan Carlos
dc.contributor.departmentEstadística, Informática y Matemáticases_ES
dc.contributor.departmentEstatistika, Informatika eta Matematikaeu
dc.contributor.departmentInstitute of Smart Cities - ISCen
dc.contributor.funderUniversidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
dc.date.accessioned2024-11-19T12:52:37Z
dc.date.available2024-11-19T12:52:37Z
dc.date.issued2025-01-01
dc.date.updated2024-11-19T12:45:45Z
dc.description.abstractIn this work we solve initial-boundary value problems associated to coupled 2D parabolic singularly perturbed systems of convection-diffusion type. The analysis is focused on the cases where the diffusion parameters are small, distinct and also they may have different order of magnitude. In such cases, overlapping regular boundary layers appear at the outflow boundary of the spatial domain. The fully discrete scheme combines the classical upwind scheme defined on an appropriate Shishkin mesh to discretize the spatial variables, and the fractional implicit Euler method joins to a decomposition of the difference operator in directions and components to integrate in time. We prove that the resulting method is uniformly convergent of first order in time and of almost first order in space. Moreover, as only small tridiagonal linear systems must be solved to advance in time, the computational cost of our method is remarkably smaller than the corresponding ones to other implicit methods considered in the previous literature for the same type of problems. The numerical results, obtained for some test problems, corroborate in practice the good behavior and the advantages of the algorithm.en
dc.description.sponsorshipThis research was partially supported by the projects PID2022-136441NB-I00 and TED2021-130884B-I00, the Aragón Government and European Social Fund (group E24-17R) and the Public University of Navarra.
dc.format.mimetypeapplication/pdfen
dc.identifier.citationClavero, C., Jorge, J. C. (2025). An efficient uniformly convergent method for multi-scaled two dimensional parabolic singularly perturbed systems of convection-diffusion type. Applied Numerical Mathematics, 207, 174-192. https://doi.org/10.1016/j.apnum.2024.09.002.
dc.identifier.doi10.1016/j.apnum.2024.09.002
dc.identifier.issn0168-9274
dc.identifier.urihttps://academica-e.unavarra.es/handle/2454/52538
dc.language.isoeng
dc.publisherElsevier
dc.relation.ispartofApplied Numerical Mathematics (2025), vol. 207
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2022-136441NB-I00/ES/
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI//TED2021-130884B-I00/
dc.relation.publisherversionhttps://doi.org/10.1016/j.apnum.2024.09.002
dc.rights© 2024 The Author(s). This is an open access article under the CC BY-NC-ND license.
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject2D linear parabolic systemsen
dc.subjectComputational costen
dc.subjectFractional implicit methodsen
dc.subjectShishkin meshesen
dc.subjectSplittingen
dc.subjectUniform convergenceen
dc.titleAn efficient uniformly convergent method for multi-scaled two dimensional parabolic singularly perturbed systems of convection-diffusion typeen
dc.typeinfo:eu-repo/semantics/article
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dspace.entity.typePublication
relation.isAuthorOfPublication057cf9b6-54a9-4331-ade0-71ca16d5b57b
relation.isAuthorOfPublication.latestForDiscovery057cf9b6-54a9-4331-ade0-71ca16d5b57b

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Clavero_EfficientUniformly.pdf
Size:
1.82 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description: