Asymptotic greediness of the Haar system in the spaces Lp[0 , 1] , 1< p< ∞

Date

2019

Authors

Ansorena, José L.
Berná, Pablo M.

Director

Publisher

Springer
Acceso abierto / Sarbide irekia
Artículo / Artikulua
Versión aceptada / Onetsi den bertsioa

Project identifier

  • MINECO//MTM2014-53009-P/ES/ recolecta
  • ES/1PE/MTM2016-76808-P/
  • ES/1PE/MTM2016-76566-P/
Impacto

Abstract

Our aim in this paper is to attain a sharp asymptotic estimate for the greedy constant Cg[H(p), Lp] of the (normalized) Haar system H(p) in Lp[0 , 1] for 1 < p < ∞. We will show that the super-democracy constant of H(p) in Lp[0 , 1] grows as p∗= max { p, p/ (p- 1) } as p∗ goes to ∞. Thus, since the unconditionality constant of H(p) in Lp[0 , 1] is p∗- 1 , the well-known general estimates for the greedy constant of a greedy basis obtained from the intrinsic features of greediness (namely, democracy and unconditionality) yield that p∗≲Cg[H(p),Lp]≲(p∗)2. Going further, we develop techniques that allow us to close the gap between those two bounds, establishing that, in fact, Cg[H(p), Lp] ≈ p∗. Our work answers a question that was raised by Hytonen (2015).

Description

Keywords

Haar basis, Greedy basis, Unconditional basis, Democratic basis, Lp spaces, Lebesgue-type inequalities

Department

Estatistika, Informatika eta Matematika / Institute for Advanced Materials and Mathematics - INAMAT2 / Estadística, Informática y Matemáticas

Faculty/School

Degree

Doctorate program

item.page.cita

item.page.rights

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.