Publication:
A comprehensive study on hot corrosion resistance of NiCoCrAlYTa and NiCrAl thermal-sprayed coatings for CSP applications

Date

2023

Authors

Aristu Ojer, Daniel
Alberro, Mikel
Rández Diago, Xabier
Fernández, Ángel G.

Director

Publisher

Elsevier
Acceso abierto / Sarbide irekia
Artículo / Artikulua
Versión publicada / Argitaratu den bertsioa

Project identifier

Abstract

The new generation of concentrated solar power (CSP) plants could be able to work at temperatures up 650 °C and carbonates molten salts are one of the main candidates to be used as thermal energy storage (TES) materials. Molten salt corrosion has been defined as one of the main issues and the technology demands more resistance alloys and innovative coatings. In this study, the assessment of hot corrosion resistance for NiCoCrAlYTa and NiCrAl thermal-sprayed coatings has been undertaken, tested on a ternary eutectic mixture (Li2CO3-Na2CO3-K2CO3) at a temperature of 650 °C. Electrochemical impedance spectroscopy and linear polarization resistance tests were used to evaluate the behaviour of the coatings but the obtained results reveal high values of corrosion rates accompanied by the formation of cracks. This unsatisfactory performance of the coatings, analysed by scanning electron microscopy and x-ray diffraction, can be attributed to a combination of different factors such as porosity, internal material stresses and thermal diffusion phenomena. As a result, it is concluded that further research is necessary to explore new coating application techniques.

Description

Keywords

Carbonate molten salts, Concentrated solar power, Hot corrosion, Thermal-sprayed coatings

Department

Ingeniería / Ingeniaritza / Institute for Advanced Materials and Mathematics - INAMAT2

Faculty/School

Degree

Doctorate program

item.page.cita

Aristu, D., Berlanga-Labari, C., Alberro, M., Rández, X., Fernández, A. G. (2023) A comprehensive study on hot corrosion resistance of NiCoCrAlYTa and NiCrAl thermal-sprayed coatings for CSP applications. Journal of Energy Storage, 74, 1-13. https://doi.org/10.1016/j.est.2023.109346.

item.page.rights

© 2023 The Authors. This is an open access article under the CC BY-NC-ND license.

Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.