Publication: New parameters and Lebesgue-type estimates in greedy approximation
Date
Authors
Director
Publisher
Project identifier
AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-095366-B-I00/ES/
AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-105599GB-I00/ES/
Impacto
Abstract
The purpose of this paper is to quantify the size of the Lebesgue constants (𝑳𝑚)∞ 𝑚=1 associated with the thresholding greedy algorithm in terms of a new generation of parameters that modulate accurately some features of a general basis. This fine tuning of constants allows us to provide an answer to the question raised by Temlyakov in 2011 to find a natural sequence of greedy-type parameters for arbitrary bases in Banach (or quasi-Banach) spaces which combined linearly with the sequence of unconditionality parameters (𝒌𝑚)∞ 𝑚=1 determines the growth of (𝑳𝑚)∞ 𝑚=1. Multiple theoretical applications and computational examples complement our study.
Description
Keywords
Department
Faculty/School
Degree
Doctorate program
item.page.cita
item.page.rights
© The Author(s), 2022. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence.
Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.