Synthetic gaze data augmentation for improved user calibration

dc.contributor.authorGarde Lecumberri, Gonzalo
dc.contributor.authorLarumbe Bergera, Andoni
dc.contributor.authorPorta Cuéllar, Sonia
dc.contributor.authorCabeza Laguna, Rafael
dc.contributor.authorVillanueva Larre, Arantxa
dc.contributor.departmentIngeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzareneu
dc.contributor.departmentInstitute of Smart Cities - ISCen
dc.contributor.departmentIngeniería Eléctrica, Electrónica y de Comunicaciónes_ES
dc.date.accessioned2021-12-09T12:25:17Z
dc.date.available2022-02-21T00:00:15Z
dc.date.issued2021
dc.description.abstractIn this paper, we focus on the calibration possibilitiesó of a deep learning based gaze estimation process applying transfer learning, comparing its performance when using a general dataset versus when using a gaze specific dataset in the pretrained model. Subject calibration has demonstrated to improve gaze accuracy in high performance eye trackers. Hence, we wonder about the potential of a deep learning gaze estimation model for subject calibration employing fine-tuning procedures. A pretrained Resnet-18 network, which has great performance in many computer vision tasks, is fine-tuned using user’s specific data in a few shot adaptive gaze estimation approach. We study the impact of pretraining a model with a synthetic dataset, U2Eyes, before addressing the gaze estimation calibration in a real dataset, I2Head. The results of the work show that the success of the individual calibration largely depends on the balance between fine-tuning and the standard supervised learning procedures and that using a gaze specific dataset to pretrain the model improves the accuracy when few images are available for calibration. This paper shows that calibration is feasible in low resolution scenarios providing outstanding accuracies below 1.5 ∘ ∘ of error.en
dc.embargo.lift2022-02-21
dc.embargo.terms2022-02-21
dc.format.extent13 p.
dc.format.mimetypeapplication/pdfen
dc.identifier.citationGarde G., Larumbe-Bergera A., Porta S., Cabeza R., Villanueva A. (2021) Synthetic Gaze Data Augmentation for Improved User Calibration. In: Del Bimbo A. et al. (eds) Pattern Recognition. ICPR International Workshops and Challenges. ICPR 2021. Lecture Notes in Computer Science, vol 12663. Springer, Cham. https://doi.org/10.1007/978-3-030-68796-0_27en
dc.identifier.doi10.1007/978-3-030-68796-0_27
dc.identifier.isbn978-3-030-68796-0 (Electronic)
dc.identifier.urihttps://academica-e.unavarra.es/handle/2454/41211
dc.language.isoengen
dc.publisherSpringeren
dc.relation.ispartofDel Bimbo A. et al. (eds) Pattern Recognition. ICPR International Workshops and Challenges. ICPR 2021. Lecture Notes in Computer Science, vol 12663. Springer, Cham. 978-3-030-68796-0en
dc.relation.publisherversionhttps://doi.org/10.1007/978-3-030-68796-0_27
dc.rights© Springer Nature Switzerland AG 2021en
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.subjectGaze estimationen
dc.subjectCalibrationen
dc.subjectTransfer learningen
dc.titleSynthetic gaze data augmentation for improved user calibrationen
dc.typeinfo:eu-repo/semantics/bookPart
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dspace.entity.typePublication
relation.isAuthorOfPublicatione764f502-1d84-436f-81cd-97bfbe0240f4
relation.isAuthorOfPublication7d67c732-213a-47e0-82f8-81a897144cfa
relation.isAuthorOfPublication8f4eb99d-97ce-4dc9-b13a-18fcd2ab44e6
relation.isAuthorOfPublication42fe20f8-5341-4c0e-8686-333ce816adfd
relation.isAuthorOfPublicationd3bfd5bf-8426-455b-bcc4-897ddb0d4c2e
relation.isAuthorOfPublication.latestForDiscoverye764f502-1d84-436f-81cd-97bfbe0240f4

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Garde_SyntheticGaze_Accepted.pdf
Size:
4.95 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description: