Twofold binary image consensus for medical imaging meta-analysis

dc.contributor.authorLópez Molina, Carlos
dc.contributor.authorSánchez Ruiz de Gordoa, Javier
dc.contributor.authorZelaya Huerta, María Victoria
dc.contributor.authorBaets, Bernard de
dc.contributor.departmentEstadística, Informática y Matemáticases_ES
dc.contributor.departmentEstatistika, Informatika eta Matematikaeu
dc.date.accessioned2020-01-27T09:50:38Z
dc.date.available2020-05-18T23:00:13Z
dc.date.issued2018
dc.description.abstractIn the field of medical imaging, ground truth is often gathered from groups of experts, whose outputs are generally heterogeneous. This procedure raises questions on how to compare the results obtained by automatic algorithms to multiple ground truth items. Secondarily, it raises questions on the meaning of the divergences between experts. In this work, we focus on the case of immunohistochemistry image segmentation and analysis. We propose measures to quantify the divergence in groups of ground truth images, and we observe their behaviour. These measures are based upon fusion techniques for binary images, which is a common example of non-monotone data fusion process. Our measures can be used not only in this specific field of medical imagery, but also in any task related to meta-quality evaluation for image processing, e.g. ground truth validation or expert rating.en
dc.embargo.lift2020-05-18
dc.embargo.terms2020-05-18
dc.format.extent12 p.
dc.format.mimetypeapplication/pdfen
dc.identifier.doi10.1007/978-3-319-91476-3_33
dc.identifier.isbn978-3-319-91475-6
dc.identifier.issn1865-0929
dc.identifier.urihttps://academica-e.unavarra.es/handle/2454/36165
dc.language.isoengen
dc.publisherSpringeren
dc.relation.ispartofMedina J. et al. (eds): Information Processing and Management of Uncertainty in Knowledge-Based Systems. Theory and Foundations. IPMU 2018. Communications in Computer and Information Science, vol 854. Springer, Chamen
dc.relation.publisherversionhttps://doi.org/10.1007/978-3-319-91476-3_33
dc.rights© 2018, Springer International Publishing AG, part of Springer Natureen
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.subjectData fusionen
dc.subjectTwofold Consensus Ground Truthen
dc.subjectMeta-analysisen
dc.subjectMedical Imageryen
dc.subjectImmunohistochemistry (IHC)en
dc.titleTwofold binary image consensus for medical imaging meta-analysisen
dc.typeinfo:eu-repo/semantics/conferenceObject
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dspace.entity.typePublication
relation.isAuthorOfPublicationb1df82f9-2ce4-488f-afe0-98e7f27ece58
relation.isAuthorOfPublication26498cd1-19ac-4305-836e-518f311f361c
relation.isAuthorOfPublicationfc740a9f-a1f1-46c3-bc2d-664eccdb4feb
relation.isAuthorOfPublication.latestForDiscoveryb1df82f9-2ce4-488f-afe0-98e7f27ece58

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2019060302_Lopez_TwofoldBinary.pdf
Size:
1.43 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description: