VCI-LSTM: Vector choquet integral-based long short-term memory

dc.contributor.authorFerrero Jaurrieta, Mikel
dc.contributor.authorTakáč, Zdenko
dc.contributor.authorFernández Fernández, Francisco Javier
dc.contributor.authorHoranská, Lubomíra
dc.contributor.authorPereira Dimuro, Graçaliz
dc.contributor.authorMontes Rodríguez, Susana
dc.contributor.authorDíaz, Irene
dc.contributor.authorBustince Sola, Humberto
dc.contributor.departmentEstadística, Informática y Matemáticases_ES
dc.contributor.departmentEstatistika, Informatika eta Matematikaeu
dc.date.accessioned2023-05-10T18:26:37Z
dc.date.available2023-05-10T18:26:37Z
dc.date.issued2022
dc.date.updated2023-05-10T18:18:45Z
dc.description.abstractChoquet integral is a widely used aggregation operator on one-dimensional and interval-valued information, since it is able to take into account the possible interaction among data. However, there are many cases where the information taken into account is vectorial, such as Long Short-Term Memories (LSTM). LSTM units are a kind of Recurrent Neural Networks that have become one of the most powerful tools to deal with sequential information since they have the power of controlling the information flow. In this paper, we first generalize the standard Choquet integral to admit an input composed by <inline-formula><tex-math notation="LaTeX">$n$</tex-math></inline-formula>-dimensional vectors, which produces an <inline-formula><tex-math notation="LaTeX">$n$</tex-math></inline-formula>-dimensional vector output. We study several properties and construction methods of vector Choquet integrals. Then, we use this integral in the place of the summation operator, introducing in this way the new VCI-LSTM architecture. Finally, we use the proposed VCI-LSTM to deal with two problems: sequential image classification and text classification.en
dc.description.sponsorshipGrant PID2019-108392GBI00 funded by MCIN/AEI/10.13039/501100011033, by CNPq (Proc. 301618/2019-4), FAPERGS (Proc. 19/2551-0001660), by Tracasa Instrumental and the Immigration Policy and Justice Department of the Government of Navarre and by the project VEGA 1/0267/21.en
dc.format.mimetypeapplication/pdfen
dc.identifier.citationFerrero-Jaurrieta, M., Takac, Z., Fernandez, J., Horanska, L., Dimuro, G. P., Montes, S., Diaz, I., Bustince, H. (2022) VCI-LSTM: Vector choquet integral-based long short-term memory. IEEE Transactions on Fuzzy Systems, 1-14. https://doi.org/10.1109/TFUZZ.2022.3222035.en
dc.identifier.doi10.1109/TFUZZ.2022.3222035
dc.identifier.issn1063-6706
dc.identifier.urihttps://academica-e.unavarra.es/handle/2454/45283
dc.language.isoengen
dc.publisherIEEEen
dc.relation.ispartofIEEE Transactions on Fuzzy Systems, 2022en
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI//PID2019-108392GBI00/
dc.relation.publisherversionhttps://doi.org/10.1109/TFUZZ.2022.3222035
dc.rights© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other work.en
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.subjectAggregation functionsen
dc.subjectChoquet integralen
dc.subjectLSTMen
dc.subjectRecurrent neural networksen
dc.subjectVector choquet integralen
dc.titleVCI-LSTM: Vector choquet integral-based long short-term memoryen
dc.typeinfo:eu-repo/semantics/article
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dspace.entity.typePublication
relation.isAuthorOfPublication3e9cb4ee-2d64-47ff-9f40-d7519dc6cb0d
relation.isAuthorOfPublication741321a5-40af-41aa-bacb-5da283dd18ab
relation.isAuthorOfPublication4eb4bdb2-e3c9-46a2-983f-dfc0dfe20e54
relation.isAuthorOfPublication1bdd7a0e-704f-48e5-8d27-4486444f82c9
relation.isAuthorOfPublication.latestForDiscovery3e9cb4ee-2d64-47ff-9f40-d7519dc6cb0d

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Ferrero_VCI-LSTM.pdf
Size:
1.51 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.78 KB
Format:
Item-specific license agreed to upon submission
Description: