Interactivity anomaly detection in remote work scenarios using LTSM

dc.contributor.authorArellano Usón, Jesús
dc.contributor.authorMagaña Lizarrondo, Eduardo
dc.contributor.authorMorató Osés, Daniel
dc.contributor.authorIzal Azcárate, Mikel
dc.contributor.departmentIngeniería Eléctrica, Electrónica y de Comunicaciónes_ES
dc.contributor.departmentIngeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritzaeu
dc.contributor.departmentInstitute of Smart Cities - ISCen
dc.date.accessioned2024-09-05T13:30:10Z
dc.date.available2024-09-05T13:30:10Z
dc.date.issued2024
dc.date.updated2024-09-05T13:18:22Z
dc.description.abstractIn recent years, there has been a notable surge in the utilization of remote desktop services, largely driven by the emergence of new remote work models introduced during the pandemic. These services cater to interactive cloud-based applications (CIAs), whose core functionality operates in the cloud, demanding strict end-user interactivity requirements. This boom has led to a significant increase in their deployment, accompanied by a corresponding increase in associated maintenance costs. Service administrators aim to guarantee a satisfactory Quality of Experience (QoE) by monitoring metrics like interactivity time, particularly in cloud environments where variables such as network performance and shared resources come into play. This paper analyses anomaly detection state of the art and proposes a novel system for detecting interactivity time anomalies in cloud-based remote desktop environments. We employ an automatic model based on LSTM neural networks that achieves an accuracy of up to 99.97%.en
dc.description.sponsorshipThis work was supported by the Spanish State Research Agency under Project PID2019-104451RB-C22/AEI/10.13039/501100011033
dc.format.mimetypeapplication/pdfen
dc.identifier.citationArellano-Uson, J., Magaña, E., Morató, D., Izal, M. (2024) Interactivity anomaly detection in remote work scenarios using LTSM. IEEE Access, 12, 34402-34416. https://doi.org/10.1109/ACCESS.2024.3372405.
dc.identifier.doi10.1109/ACCESS.2024.3372405
dc.identifier.issn2169-3536
dc.identifier.urihttps://academica-e.unavarra.es/handle/2454/51549
dc.language.isoeng
dc.publisherIEEE
dc.relation.ispartofIEEE Access 12, 34402-34416, 2024
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-104451RB-C22/ES/
dc.relation.publisherversionhttps://doi.org/10.1109/ACCESS.2024.3372405
dc.rights© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectAnomaly detectionen
dc.subjectCloud-based interactive applicationsen
dc.subjectInteractivity timeen
dc.subjectLSTMen
dc.subjectQoEen
dc.subjectRemote desktopen
dc.subjectRemote worken
dc.titleInteractivity anomaly detection in remote work scenarios using LTSMen
dc.typeinfo:eu-repo/semantics/article
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dspace.entity.typePublication
relation.isAuthorOfPublicationeb545794-5a9a-4b97-8519-fcb75e356538
relation.isAuthorOfPublicationc521bf55-a1e7-47b2-ac98-5fbf8c286f7a
relation.isAuthorOfPublicationcd454059-725e-480a-b896-894e79f307a5
relation.isAuthorOfPublicationf829a159-0938-45d1-a352-d28fb297ed0b
relation.isAuthorOfPublication.latestForDiscoveryeb545794-5a9a-4b97-8519-fcb75e356538

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Arellano_InteractivityAnomaly.pdf
Size:
3.23 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description: