Pohlke theorem: demonstration and graphical solution
dc.contributor.author | Gimena Ramos, Faustino | |
dc.contributor.author | Gimena Ramos, Lázaro | |
dc.contributor.author | Goñi Garatea, Mikel | |
dc.contributor.author | Gonzaga Vélez, Pedro | |
dc.contributor.department | Proyectos e Ingeniería Rural | es_ES |
dc.contributor.department | Landa Ingeniaritza eta Proiektuak | eu |
dc.date.accessioned | 2023-09-12T09:42:05Z | |
dc.date.available | 2023-09-12T09:42:05Z | |
dc.date.issued | 2017 | |
dc.date.updated | 2023-09-12T09:37:38Z | |
dc.description.abstract | It is known that the axonometric defined by Pohlke, is geometrically known as a means of representing the figures of space using a cylindrical projec-tion and proportions. His theorem says that the three unit vectors orthogonal axes of the basis in the space can be transformed into three arbitrary vectors with com-mon origin located in the frame plane. Another way of expressing this theorem is given in three segments mismatched and incidents at one point in a plane, there is a trirectangular unitary thriedra in the space that can be transformed in these three segments. This paper presents a graphical procedure to demonstrate a solution of Pohlke¿s theorem. To do this, we start from previous work by the authors on the axonometric perspective. Graphic constructions that allow a single joint invariant description of relationships between an orthogonal axonometric oblique axono-metric system and systems associated thereby. At a same time of the geometric lo-cus generated by the diagonal magnitude positioned at any direction in the plane of the picture. This magnitude is the square root of the sum of the squares of the projection of the three segments representing axonometric on arbitrary magnitude. | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.citation | Gonzaga, P., Gimena, F., Gimena, L., Goñi, M. (2017) Pohlke theorem: demonstration and graphical solution. En Eynard, B., Nigrelli, V., Oliveri, S. M., Peris-Fajarnes, G., Rizzuti S. (Eds.), Advances on Mechanics, Design Engineering and Manufacturing: proceedings of the International Joint Conference on Mechanics, Design Engineering & Advanced Manufacturing (JCM 2016) (pp. 981-988). Springer. https://doi.org/10.1007/978-3-319-45781-9_98. | en |
dc.identifier.doi | 10.1007/978-3-319-45781-9_98 | |
dc.identifier.isbn | 978-3-319-45780-2 | |
dc.identifier.uri | https://academica-e.unavarra.es/handle/2454/46312 | |
dc.language.iso | eng | en |
dc.publisher | Springer | en |
dc.relation.ispartof | Eynard, B.; Nigrelli, V.; Oliveri, S. M.; Peris-Fajarnes, G.; Rizzuti, S. (Eds.). Advances on Mechanics, Design Engineering and Manufacturing: proceedings of the International Joint Conference on Mechanics, Design Engineering & Advanced Manufacturing (JCM 2016). Berlín: Springer; 2017. p.981-988 978-3-319-45780-2 | en |
dc.relation.publisherversion | https://doi.org/10.1007/978-3-319-45781-9_98 | |
dc.rights | © 2017 Springer International Publishing AG | en |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | |
dc.subject | Axonometric system | en |
dc.subject | Descriptive geometry | en |
dc.subject | Pohlke theorem | en |
dc.title | Pohlke theorem: demonstration and graphical solution | en |
dc.type | info:eu-repo/semantics/conferenceObject | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 6ba4b484-dc18-45a8-839a-dc162bf77fd4 | |
relation.isAuthorOfPublication | 5c4e8eae-fd0c-42b8-951b-8e9fa4908b05 | |
relation.isAuthorOfPublication | e3d87a7d-494a-4457-be74-a7f48f023336 | |
relation.isAuthorOfPublication | 0a1b0120-4a40-4ac9-87a6-10a3b7fffd57 | |
relation.isAuthorOfPublication.latestForDiscovery | 6ba4b484-dc18-45a8-839a-dc162bf77fd4 |