In spatio-temporal disease mapping models, identifiability constraints affect PQL and INLA results

dc.contributor.authorGoicoa Mangado, Tomás
dc.contributor.authorAdin Urtasun, Aritz
dc.contributor.authorUgarte Martínez, María Dolores
dc.contributor.authorHodges, James S.
dc.contributor.departmentInstitute for Advanced Materials and Mathematics - INAMAT2en
dc.date.accessioned2024-01-18T07:26:30Z
dc.date.available2024-01-18T07:26:30Z
dc.date.issued2018
dc.date.updated2024-01-18T07:16:03Z
dc.description.abstractDisease mapping studies the distribution of relative risks or rates in space and time, and typically relies on generalized linear mixed models (GLMMs) including fixed effects and spatial, temporal, and spatio-temporal random effects. These GLMMs are typically not identifiable and constraints are required to achieve sensible results. However, automatic specification of constraints can sometimes lead to misleading results. In particular, the penalized quasi-likelihood fitting technique automatically centers the random effects even when this is not necessary. In the Bayesian approach, the recently-introduced integrated nested Laplace approximations computing technique can also produce wrong results if constraints are not wellspecified. In this paper the spatial, temporal, and spatiotemporal interaction random effects are reparameterized using the spectral decompositions of their precision matrices to establish the appropriate identifiability constraints. Breast cancer mortality data from Spain is used to illustrate the ideas.en
dc.description.sponsorshipThis work has been supported by the Spanish Ministry of Economy and Competitiveness (project MTM2014- 51992-R), and by the Health Department of the Navarre Government (Project 113, Res.2186/2014).en
dc.format.mimetypeapplication/pdfen
dc.identifier.citationGoicoa, T., Adin, A., Ugarte, M. D., & Hodges, J. S. (2018). In spatio-temporal disease mapping models, identifiability constraints affect PQL and INLA results. Stochastic Environmental Research and Risk Assessment, 32(3), 749-770. https://doi.org/10.1007/s00477-017-1405-0en
dc.identifier.doi10.1007/s00477-017-1405-0
dc.identifier.issn1436-3240
dc.identifier.urihttps://academica-e.unavarra.es/handle/2454/47086
dc.language.isoengen
dc.publisherSpringeren
dc.relation.ispartofStochastic Environmental Research and Risk Assessment, (2018) 32:749-770en
dc.relation.projectIDinfo:eu-repo/grantAgreement/MINECO//MTM2014-51992-R/ES/
dc.relation.projectIDinfo:eu-repo/grantAgreement/Gobierno de Navarra//Project 113/
dc.relation.publisherversionhttps://doi.org/10.1007/s00477-017-1405-0
dc.rights© Springer-Verlag Berlin Heidelberg 2017en
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.subjectBreast canceren
dc.subjectINLAen
dc.subjectLeroux CAR prioren
dc.subjectPQLen
dc.subjectSpace-time interactionsen
dc.titleIn spatio-temporal disease mapping models, identifiability constraints affect PQL and INLA resultsen
dc.typeinfo:eu-repo/semantics/article
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dspace.entity.typePublication
relation.isAuthorOfPublication77ba75f3-a30d-4f01-8cc5-9de6d3a10d8d
relation.isAuthorOfPublication6f8418c3-eae2-4388-b12a-0690e60d468f
relation.isAuthorOfPublicatione87ff19e-9d36-4286-989b-cafd391dff9d
relation.isAuthorOfPublication.latestForDiscovery77ba75f3-a30d-4f01-8cc5-9de6d3a10d8d

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Identifiability_PAPER.pdf
Size:
482.82 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.78 KB
Format:
Item-specific license agreed to upon submission
Description: