Publication:
Multifunctionalized carbon dots as an active nanocarrier for drug delivery to the glioblastoma cell line

Consultable a partir de

Date

2024

Authors

Soto, Juan
Pino-González, M. Soledad
González-Muñoz, Elena
Dučić, Tanja

Director

Publisher

American Chemical Society
Acceso abierto / Sarbide irekia
Artículo / Artikulua
Versión publicada / Argitaratu den bertsioa

Project identifier

AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2021-122613OB-I00/ES/recolecta

Abstract

Nanoparticle-based nanocarriers represent a viable alternative to conventional direct administration in cancer cells. This advanced approach employs the use of nanotechnology to transport therapeutic agents directly to cancer cells, thereby reducing the risk of damage to healthy cells and enhancing the efficacy of treatment. By approving nanoparticle-based nanocarriers, the potential for targeted, effective treatment is greatly increased. The so-called carbon-based nanoparticles, or carbon dots, have been hydrothermally prepared and initiated by a polymerization process. We synthesized and characterized nanoparticles of 2-acrylamido-2-methylpropanesulfonic acid, which showed biocompatibility with glioblastoma cells, and further, we tested them as a carrier for the drug riluzole. The obtained nanoparticles have been extensively characterized by techniques to obtain the exact composition of their surface by using Fourier transform infrared (FTIR), X-ray photoelectron spectroscopy (XPS), and nuclear magnetic resonance (NMR) spectroscopy, as well as cryo-transmission electron microscopy. We found that the surface of the synthesized nanoparticles (NPs) is covered mainly by sulfonated, carboxylic, and substituted amide groups. These functional groups make them suitable as carriers for drug delivery in cancer cells. Specifically, we have successfully utilized the NPs as a delivery system for the drug riluzole, which has shown efficacy in treating glioblastoma cancer cells. The effect of nanoparticles as carriers for the riluzole system on glioblastoma cells was studied using live-cell synchrotron-based FTIR microspectroscopy to monitor in situ biochemical changes. After applying nanoparticles as nanocarriers, we have observed changes in all biomacromolecules, including the nucleic acids and protein conformation. These findings provide a strong foundation for further exploration into the development of targeted treatments for glioblastoma.

Keywords

Cancer, Cells, Fourier transform infrared spectroscopy, Nanocarriers, Nanoparticles

Department

Institute for Advanced Materials and Mathematics - INAMAT2

Faculty/School

Degree

Doctorate program

Editor version

Funding entities

The authors are grateful for financial support from the Spanish Ministry of Science and Innovation (MCIN/AEI/10.13039/501100011033) through project PID2021-122613OB-I00 as well as the ALBA In-house grant: “Synergetic multimodal FTIR and X-ray spectro-microscopical approach for 3D cell culture evaluation”. Open access funding is provided by Universidad Pública de Navarra. The authors acknowledge funding from Project, IU16-014045 (CRYO-TEM) from Generalitat de Catalunya and by “ERDF A way of making Europe”, by the European Union.

© 2024 The Authors. This publication is licensed under CC-BY-NC-ND 4.0.

Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.