Publication: Experimental demonstration of the impact of the fringe shape in sub-lambda/2 sensing with optical feedback interferometry
Date
Authors
Director
Publisher
Project identifier
Métricas Alternativas
Abstract
It is established in the optical feedback interferometry (OFI) theory that the shape of the interferometric fringe has an impact on the detector's response to very small displacement measurements. In this paper, we validate¿for the first time, to the best of our knowledge, based on experimental results¿this statement by comparing experiments to an established model implementation. Through these experiments, we show that the amplitude of the signals induced by sub-lambda/2 optical path variations is linearly dependent on the slope of the underlying fringe. Thus, careful control of the phase allows us to maximize the detection amplitude of very small displacements by positioning the phase where the fringe slope is the steepest. These results are directly applicable to established OFI applications that measure sub-lambda/2 optical path variations, such as OFI vibrometers or acoustic imaging though the acousto-optic effect.
Description
Keywords
Department
Faculty/School
Degree
Doctorate program
item.page.cita
item.page.rights
© 2021 Optica Publishing Group. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modifications of the content of this paper are prohibited.
Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.