Generalizing max pooling via (a, b)-grouping functions for convolutional neural networks

dc.contributor.authorRodríguez Martínez, Iosu
dc.contributor.authorDa Cruz Asmus, Tiago
dc.contributor.authorPereira Dimuro, Graçaliz
dc.contributor.authorHerrera, Francisco
dc.contributor.authorTakáč, Zdenko
dc.contributor.authorBustince Sola, Humberto
dc.contributor.departmentEstadística, Informática y Matemáticases_ES
dc.contributor.departmentEstatistika, Informatika eta Matematikaeu
dc.contributor.departmentInstitute of Smart Cities - ISCen
dc.contributor.funderUniversidad Pública de Navarra / Nafarroako Unibertsitate Publikoaes
dc.date.accessioned2023-09-19T07:23:41Z
dc.date.available2023-09-19T07:23:41Z
dc.date.issued2023
dc.date.updated2023-09-19T06:40:08Z
dc.descriptionVersión resumida en castellano: https://academica-e.unavarra.es/handle/2454/53324
dc.description.abstractDue to their high adaptability to varied settings and effective optimization algorithm, Convolutional Neural Networks (CNNs) have set the state-of-the-art on image processing jobs for the previous decade. CNNs work in a sequential fashion, alternating between extracting significant features from an input image and aggregating these features locally through ‘‘pooling" functions, in order to produce a more compact representation. Functions like the arithmetic mean or, more typically, the maximum are commonly used to perform this downsampling operation. Despite the fact that many studies have been devoted to the development of alternative pooling algorithms, in practice, ‘‘max-pooling" still equals or exceeds most of these possibilities, and has become the standard for CNN construction. In this paper we focus on the properties that make the maximum such an efficient solution in the context of CNN feature downsampling and propose its replacement by grouping functions, a family of functions that share those desirable properties. In order to adapt these functions to the context of CNNs, we present (𝑎, 𝑏)- grouping functions, an extension of grouping functions to work with real valued data. We present different construction methods for (𝑎, 𝑏)-grouping functions, and demonstrate their empirical applicability for replacing max-pooling by using them to replace the pooling function of many well-known CNN architectures, finding promising results.en
dc.description.sponsorshipThe authors gratefully acknowledge the financial support of Tracasa Instrumental (iTRACASA) and of the Gobierno de Navarra - Departamento de Universidad, Innovación y Transformación Digital, as well as that of the Spanish Ministry of Science (project PID2019-108392GB-I00 (AEI/10.13039/501100011033)) and the project PC095-096 FUSIPROD. T. Asmus and G.P. Dimuro are supported by the projects CNPq (301618/2019-4) and FAPERGS (19/2551-0001279-9). F. Herrera is supported by the Andalusian Excellence project P18-FR4961. Z. Takáč is supported by grant VEGA 1/0267/21. Open access funding provided by Universidad Pública de Navarra.en
dc.format.mimetypeapplication/pdfen
dc.identifier.citationRodríguez-Corbo, F. A., Celaya-Echarri, M., Shubair, R. M., Falcone, F., & Azpilicueta, L. (2023). An enhanced approach to virtually increase quasi-stationarity regions within geometric channel models for vehicular communications. IEEE Antennas and Wireless Propagation Letters, 22(9), 2180-2184. https://doi.org/10.1109/LAWP.2023.3281081en
dc.identifier.doi10.1016/j.inffus.2023.101893
dc.identifier.issn1566-2535
dc.identifier.urihttps://academica-e.unavarra.es/handle/2454/46368
dc.language.isoengen
dc.publisherElsevieren
dc.relation.ispartofInformation Fusion 99 (2023) 101893en
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-108392GB-I00/ES/
dc.relation.projectIDinfo:eu-repo/grantAgreement/Gobierno de Navarra/
dc.relation.publisherversionhttps://doi.org/10.1016/j.inffus.2023.101893
dc.rights© 2023 The Author(s). This is an open access article under the CC BY license.en
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectConvolutional neural networksen
dc.subjectGrouping functionsen
dc.subjectPooling functionsen
dc.subjectImage classificationen
dc.titleGeneralizing max pooling via (a, b)-grouping functions for convolutional neural networksen
dc.typeinfo:eu-repo/semantics/article
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dspace.entity.typePublication
relation.isAuthorOfPublication70c54ba9-626d-461e-aa8a-a3f99f35ba13
relation.isAuthorOfPublication64b6af0b-c005-4e1d-9eef-83f80e2ec8a4
relation.isAuthorOfPublication4eb4bdb2-e3c9-46a2-983f-dfc0dfe20e54
relation.isAuthorOfPublication1bdd7a0e-704f-48e5-8d27-4486444f82c9
relation.isAuthorOfPublication.latestForDiscovery70c54ba9-626d-461e-aa8a-a3f99f35ba13

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Rodriguez_GeneralizingMax.pdf
Size:
1.02 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.78 KB
Format:
Item-specific license agreed to upon submission
Description: