Dissimilarity based choquet integrals

dc.contributor.authorBustince Sola, Humberto
dc.contributor.authorMesiar, Radko
dc.contributor.authorFernández Fernández, Francisco Javier
dc.contributor.authorGalar Idoate, Mikel
dc.contributor.authorPaternain Dallo, Daniel
dc.contributor.departmentEstadística, Informática y Matemáticases_ES
dc.contributor.departmentEstatistika, Informatika eta Matematikaeu
dc.date.accessioned2021-02-19T08:12:07Z
dc.date.available2021-06-05T23:00:12Z
dc.date.issued2020
dc.descriptionTrabajo presentado a la 18th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, IPMU 2020. Lisboa, junio de 2021es
dc.description.abstractIn this paper, in order to generalize the Choquet integral, we replace the difference between inputs in its definition by a restricted dissimilarity function and refer to the obtained function as d-Choquet integral. For some particular restricted dissimilarity function the corresponding d-Choquet integral with respect to a fuzzy measure is just the ‘standard’ Choquet integral with respect to the same fuzzy measure. Hence, the class of all d-Choquet integrals encompasses the class of all 'standard' Choquet integrals. This approach allows us to construct a wide class of new functions, d-Choquet integrals, that are possibly, unlike the 'standard' Choquet integral, outside of the scope of aggregation functions since the monotonicity is, for some restricted dissimilarity function, violated and also the range of such functions can be wider than [0, 1], in particular it can be [0, n].en
dc.description.sponsorshipSupported by the project VEGA 1/0545/20.en
dc.embargo.lift2021-06-05
dc.embargo.terms2021-06-05
dc.format.extent9 p.
dc.format.mimetypeapplication/pdfen
dc.identifier.doi10.1007/978-3-030-50143-3_44
dc.identifier.isbn978-3-030-50143-3 (Electronic)
dc.identifier.urihttps://academica-e.unavarra.es/handle/2454/39262
dc.language.isoengen
dc.publisherSpringeren
dc.relation.ispartofLesot MJ. et al. (eds) Information Processing and Management of Uncertainty in Knowledge-Based Systems. IPMU 2020. Communications in Computer and Information Science, vol 1238. Springer, Cham, 2020, pp. 565-573. ISBN 978-3-030-50143-4en
dc.relation.publisherversionhttps://doi.org/10.1007/978-3-030-50143-3_44
dc.rights© Springer Nature Switzerland AG 2020en
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.subjectChoquet integralen
dc.subjectd-Choquet integralen
dc.subjectDissimilarityen
dc.subjectPre-aggregation functionen
dc.subjectAggregation functionen
dc.subjectMonotonicityen
dc.subjectDirectional monotonicityen
dc.titleDissimilarity based choquet integralsen
dc.typeinfo:eu-repo/semantics/conferenceObject
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dspace.entity.typePublication
relation.isAuthorOfPublication1bdd7a0e-704f-48e5-8d27-4486444f82c9
relation.isAuthorOfPublication741321a5-40af-41aa-bacb-5da283dd18ab
relation.isAuthorOfPublication44c7a308-9c21-49ef-aa03-b45c2c5a06fd
relation.isAuthorOfPublicationca16c024-51e4-4f8f-b457-dc5307be32d9
relation.isAuthorOfPublication.latestForDiscovery1bdd7a0e-704f-48e5-8d27-4486444f82c9

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2020101289_Bustince_DissimilarityBased.pdf
Size:
267.98 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description: