Robust multisampled capacitor voltage active damping for grid-connected power converters

dc.contributor.authorSamanes Pascual, Javier
dc.contributor.authorUrtasun Erburu, Andoni
dc.contributor.authorGubía Villabona, Eugenio
dc.contributor.authorPetri, Alberto
dc.contributor.departmentIngeniería Eléctrica, Electrónica y de Comunicaciónes_ES
dc.contributor.departmentIngeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzareneu
dc.contributor.funderUniversidad Pública de Navarra / Nafarroako Unibertsitate Publikoaes
dc.date.accessioned2018-11-08T18:01:06Z
dc.date.available2021-02-01T00:00:10Z
dc.date.issued2019
dc.description.abstractThe derivative feedback of the capacitor voltage is one of the most extended active damping strategies, used to eliminate stability problems in grid-connected power converters with an LCL filter. This strategy is equivalent to the implementation of a virtual impedance in parallel with the filter capacitor. This virtual impedance is strongly affected by the control loop delays and frequency, creating changes in the sign of the emulated virtual resistor, and raising instability regions where the active damping is ineffective. As a consequence, the LCL resonance frequency is restricted to vary, as the effective grid inductance changes, within the active damping stability region. This is an additional restriction imposed on the LCL filter design that can compromise the achievement of an optimised design. For this reason, in this work, a different strategy is presented; by adjusting the delay in the active damping feedback path, it becomes stable within the range where the LCL resonance frequency can be located for a given filter design, achieving a robust damping. Analytical expressions are provided to adjust this delay. To widen the stability region of the capacitor voltage derivative active damping, a multisampled derivative is implemented, overcoming its limitations close to the control Nyquist frequency. Experimental and simulation results validate the active damping strategy presented.en
dc.description.sponsorshipThis work has been supported by the Spanish State Research Agency (AEI) and FEDER-UE under grant DPI2016-80641-R. This work was partially funded by the Public University of Navarre through a doctoral scholarship.en
dc.embargo.lift2021-02-01
dc.embargo.terms2021-02-01
dc.format.mimetypeapplication/pdfen
dc.identifier.doi10.1016/j.ijepes.2018.09.014
dc.identifier.issn0142-0615
dc.identifier.urihttps://academica-e.unavarra.es/handle/2454/31361
dc.language.isoengen
dc.publisherElsevieren
dc.relation.ispartofInternational Journal of Electrical Power & Energy Systems, vol. 105, pp. 741-752en
dc.relation.projectIDinfo:eu-repo/grantAgreement/ES/1PE/DPI2016-80641-R/
dc.relation.publisherversionhttps://doi.org/10.1016/j.ijepes.2018.09.014
dc.rights© 2017 Elsevier Ltd. The manuscript version is made available under the CC BY-NC-ND 4.0 license.en
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectActive dampingen
dc.subjectCapacitor voltage derivativeen
dc.subjectConverter controlen
dc.subjectGrid connected power converteren
dc.subjectLCL-filteren
dc.subjectMultisamplingen
dc.titleRobust multisampled capacitor voltage active damping for grid-connected power convertersen
dc.typeinfo:eu-repo/semantics/article
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dspace.entity.typePublication
relation.isAuthorOfPublicationbcf9323d-39a0-4608-a6a9-8ce5a378df83
relation.isAuthorOfPublication7cedc40b-6b94-46fc-951c-536223530127
relation.isAuthorOfPublication96145d0c-7ec6-4b2c-944d-caba1acfe414
relation.isAuthorOfPublication.latestForDiscoverybcf9323d-39a0-4608-a6a9-8ce5a378df83

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
RobustMultisampled.pdf
Size:
1.87 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.78 KB
Format:
Item-specific license agreed to upon submission
Description: