The use of two-point Taylor expansions in singular one-dimensional boundary value problems I
dc.contributor.author | Ferreira González, Chelo | |
dc.contributor.author | López García, José Luis | |
dc.contributor.author | Pérez Sinusía, Ester | |
dc.contributor.department | Matematika eta Informatika Ingeniaritza | eu |
dc.contributor.department | Institute for Advanced Materials and Mathematics - INAMAT2 | en |
dc.contributor.department | Ingeniería Matemática e Informática | es_ES |
dc.date.accessioned | 2018-12-14T12:04:15Z | |
dc.date.available | 2020-07-15T23:00:11Z | |
dc.date.issued | 2018 | |
dc.description.abstract | We consider the second-order linear differential equation (x + 1)y′′ + f(x)y′ + g(x)y = h(x) in the interval (−1, 1) with initial conditions or boundary conditions (Dirichlet, Neumann or mixed Dirichlet-Neumann). The functions f(x), g(x) and h(x) are analytic in a Cassini disk Dr with foci at x = ±1 containing the interval [−1, 1]. Then, the end point of the interval x = −1 may be a regular singular point of the differential equation. The two-point Taylor expansion of the solution y(x) at the end points ±1 is used to study the space of analytic solutions in Dr of the differential equation, and to give a criterion for the existence and uniqueness of analytic solutions of the boundary value problem. This method is constructive and provides the two-point Taylor approximation of the analytic solutions when they exist. | en |
dc.description.sponsorship | The Ministerio de Economía y Competitividad (REF. MTM2014-52859-P) is acknowledged by its financial support. | en |
dc.embargo.lift | 2020-07-15 | |
dc.embargo.terms | 2020-07-15 | |
dc.format.extent | 18 p. | |
dc.format.mimetype | application/pdf | en |
dc.identifier.doi | 10.1016/j.jmaa.2018.03.041 | |
dc.identifier.issn | 0022-247X (Print) | |
dc.identifier.uri | https://academica-e.unavarra.es/handle/2454/31777 | |
dc.language.iso | eng | en |
dc.publisher | Elsevier | en |
dc.relation.ispartof | Journal of Mathematical Analysis and Applications, 463 (2018) 708-725 | en |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MTM2014-52859-P/ES/ | |
dc.relation.publisherversion | https://doi.org/10.1016/j.jmaa.2018.03.041 | |
dc.rights | © 2018 Elsevier Inc. The manuscript version is made available under the CC BY-NC-ND 4.0 license. | en |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject | Second-order linear differential equations | en |
dc.subject | Regular singular point | en |
dc.subject | Boundary value problem | en |
dc.subject | Frobenius method | en |
dc.subject | Two-point Taylor expansions | en |
dc.title | The use of two-point Taylor expansions in singular one-dimensional boundary value problems I | en |
dc.type | info:eu-repo/semantics/article | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 8b28fd50-66f4-431e-a219-43d8c02bb077 | |
relation.isAuthorOfPublication | e6cd33c5-6d5e-455c-b8da-32a9702e16c8 | |
relation.isAuthorOfPublication | 93f891c7-529d-4972-8759-9d943c60949c | |
relation.isAuthorOfPublication.latestForDiscovery | 8b28fd50-66f4-431e-a219-43d8c02bb077 |