Publication:
Reeb’s theorem and periodic orbits for a rotating Hénon–Heiles potential

Consultable a partir de

2020-12-04

Date

2019

Authors

Lanchares, Víctor
Pascual, Ana Isabel
Iñarrea, Manuel
Salas, José Pablo
Palacián Subiela, Jesús Francisco

Director

Publisher

Springer
Acceso abierto / Sarbide irekia
Artículo / Artikulua
Versión aceptada / Onetsi den bertsioa

Project identifier

MINECO//MTM2014-59433-C2-1-P/ES/recolecta
AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-88137-C2-1-P/ES/recolecta

Abstract

We apply Reeb’s theorem to prove the existence of periodic orbits in the rotating Hénon– Heiles system. To this end, a sort of detuned normal form is calculated that yields a reduced system with at most four non degenerate equilibrium points. Linear stability and bifurcations of equilibrium solutions mimic those for periodic solutions of the original system. We also determine heteroclinic connections that can account for transport phenomena.

Keywords

Averaging, Normalization, Reduced space, Hamiltonian oscillators, Periodic solutions

Department

Estatistika, Informatika eta Matematika / Institute for Advanced Materials and Mathematics - INAMAT2 / Estadística, Informática y Matemáticas

Faculty/School

Degree

Doctorate program

Editor version

Funding entities

This work has been partly supported from the Spanish Ministry of Science and Innovation through the Projects MTM2014-59433-CO (Subprojects MTM2014-59433-C2-1-P and MTM2014-59433- C2-2-P), MTM2017-88137-CO (Subprojects MTM2017-88137-C2-1-P and MTM2017-88137-C2-2-P), and by University of La Rioja through Project REGI 2018751.

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.