Reeb’s theorem and periodic orbits for a rotating Hénon–Heiles potential
Date
2019
Authors
Lanchares, Víctor
Pascual, Ana Isabel
Iñarrea, Manuel
Salas, José Pablo
Director
Publisher
Springer
Acceso abierto / Sarbide irekia
Artículo / Artikulua
Versión aceptada / Onetsi den bertsioa
Impacto
Abstract
We apply Reeb’s theorem to prove the existence of periodic orbits in the rotating Hénon– Heiles system. To this end, a sort of detuned normal form is calculated that yields a reduced system with at most four non degenerate equilibrium points. Linear stability and bifurcations of equilibrium solutions mimic those for periodic solutions of the original system. We also determine heteroclinic connections that can account for transport phenomena.
Description
Keywords
Averaging, Normalization, Reduced space, Hamiltonian oscillators, Periodic solutions
Department
Estatistika, Informatika eta Matematika / Institute for Advanced Materials and Mathematics - INAMAT2 / Estadística, Informática y Matemáticas
Faculty/School
Degree
Doctorate program
item.page.cita
item.page.rights
© Springer Science+Business Media, LLC, part of Springer Nature 2019
Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.