The potential of forecasting in reducing the LCOE in PV plants under ramp-rate restrictions

dc.contributor.authorCirés Buey, Eulalia
dc.contributor.authorMarcos Álvarez, Javier
dc.contributor.authorParra Laita, Íñigo de la
dc.contributor.authorGarcía Solano, Miguel
dc.contributor.authorMarroyo Palomo, Luis
dc.contributor.departmentIngeniería Eléctrica, Electrónica y de Comunicaciónes_ES
dc.contributor.departmentInstitute of Smart Cities - ISCen
dc.contributor.departmentIngeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzareneu
dc.date.accessioned2024-01-09T11:34:02Z
dc.date.available2024-01-09T11:34:02Z
dc.date.issued2019
dc.date.updated2024-01-09T11:24:26Z
dc.description.abstractAn increasing number of grid codes are requiring the limitation of the PV output power fluctuation over a given time scale. Batteries represent the most obvious solution to smooth power fluctuations, with the corresponding negative impact on the PV energy cost. However, short-term forecasting is currently being proposed as a tool to reduce battery capacity requirements or even completely remove it. Although these solutions decrease or avoid the battery cost, it also entails some energy curtailment losses which obviously raise the final cost of PV energy. This energy losses, currently unknown, are independent of the forecasting accuracy and represent the minimal additional cost in the hypothetical case of a perfect prediction. Thus, this paper compares Levelized Cost of Energy (LCOE) of three ramp-rate control strategies in order to determine which would give the lowest cost: battery-based, ideal short-term forecasting, or a combination of both. Results show that curtailment losses would be small enough to make battery-less strategy an appropriate choice, so it is worthwhile improving short-term forecasting in view of the potential LCOE savings. Database is taken from high resolution measurements recorded for over a year at 8 PV plants ranging from 1 to 46 MWp.en
dc.description.sponsorshipThe authors would like to thank ACCIONA for authorizing measurements at its PV plants and for the helpful collaboration of its staff. This work has been supported by the Spanish State Research Agency (AEI) and FEDER-UE (ERDF-EU) under grants DPI2016-80641-R and DPI2016-80642-R.en
dc.format.mimetypeapplication/pdfen
dc.identifier.citationCirés, E., Marcos, J., De La Parra, I., García, M., & Marroyo, L. (2019). The potential of forecasting in reducing the LCOE in PV plants under ramp-rate restrictions. Energy, 188, 116053. https://doi.org/10.1016/j.energy.2019.116053en
dc.identifier.doi10.1016/j.energy.2019.116053
dc.identifier.issn0360-5442
dc.identifier.urihttps://academica-e.unavarra.es/handle/2454/46988
dc.language.isoengen
dc.publisherElsevieren
dc.relation.ispartofEnergy 188 (2019) 116053en
dc.relation.projectIDinfo:eu-repo/grantAgreement/ AEI// DPI2016-80641-R/
dc.relation.projectIDinfo:eu-repo/grantAgreement/ AEI//DPI2016-80642-R/
dc.relation.publisherversionhttps://doi.org/10.1016/j.energy.2019.116053
dc.rights© 2019 Elsevier Ltd. This manuscript version is made available under the CC-BY-NC-ND 4.0.en
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectGrid-connected PV plantsen
dc.subjectPower fluctuation smoothingen
dc.subjectRamp-rate controlen
dc.subjectShort-term forecasten
dc.subjectLevelized costs of electricity (LCOE)en
dc.subjectEnergy storageen
dc.titleThe potential of forecasting in reducing the LCOE in PV plants under ramp-rate restrictionsen
dc.typeinfo:eu-repo/semantics/article
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dspace.entity.typePublication
relation.isAuthorOfPublicatione7e0720e-3822-4c2c-a626-db362d58f6ef
relation.isAuthorOfPublication1dc3e95e-6526-4693-bdef-4ac2c8170aeb
relation.isAuthorOfPublication85b5bdcf-db9f-4857-9e63-bb5e68db41a0
relation.isAuthorOfPublicationa68eb3e8-cf0e-4b2b-952b-d419a42a5f8c
relation.isAuthorOfPublication.latestForDiscoverye7e0720e-3822-4c2c-a626-db362d58f6ef

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Cires_PotentialForecasting.pdf
Size:
1.15 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.78 KB
Format:
Item-specific license agreed to upon submission
Description: