Fast and robust ellipse detection algorithm for head-mounted eye tracking systems

dc.contributor.authorMartinikorena Aranburu, Ion
dc.contributor.authorCabeza Laguna, Rafael
dc.contributor.authorVillanueva Larre, Arantxa
dc.contributor.authorUrtasun, Iñaki
dc.contributor.authorLarumbe Bergera, Andoni
dc.contributor.departmentIngeniería Eléctrica, Electrónica y de Comunicaciónes_ES
dc.contributor.departmentIngeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzareneu
dc.date.accessioned2020-02-05T09:41:26Z
dc.date.available2020-02-05T09:41:26Z
dc.date.issued2018
dc.description.abstractIn head-mounted eye tracking systems, the correct detection of pupil position is a key factor in estimating gaze direction. However, this is a challenging issue when the videos are recorded in real-world conditions, due to the many sources of noise and artifacts that exist in these scenarios, such as rapid changes in illumination, reflections, occlusions and an elliptical appearance of the pupil. Thus, it is an indispensable prerequisite that a pupil detection algorithm is robust in these challenging conditions. In this work, we present one pupil center detection method based on searching the maximum contribution point to the radial symmetry of the image. Additionally, two different center refinement steps were incorporated with the aim of adapting the algorithm to images with highly elliptical pupil appearances. The performance of the proposed algorithm is evaluated using a dataset consisting of 225,569 head-mounted annotated eye images from publicly available sources. The results are compared with the better algorithm found in the bibliography, with our algorithm being shown as superior.en
dc.description.sponsorshipThe authors would like to acknowledge the Spanish Ministry of Economy, Industry and Competitiveness for their support under Contract TIN2014-52897-R in the framework of the National Plan of I+D+i.in the framework of the National Plan of I+D+i.en
dc.format.extent16 p.
dc.format.mimetypeapplication/pdfen
dc.identifier.doi10.1007/s00138-018-0940-0
dc.identifier.issn1432-1769
dc.identifier.urihttps://academica-e.unavarra.es/handle/2454/36192
dc.language.isoengen
dc.publisherSpringeren
dc.relation.ispartofMachine Vision and Applications (2018) 29:845–860en
dc.relation.projectIDinfo:eu-repo/grantAgreement/MINECO//TIN2014-52897-R/ES/
dc.relation.publisherversionhttps://doi.org/10.1007/s00138-018-0940-0
dc.rightsThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.en
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectEye trackingen
dc.subjectHead mounteden
dc.subjectPupil detectionen
dc.titleFast and robust ellipse detection algorithm for head-mounted eye tracking systemsen
dc.typeinfo:eu-repo/semantics/article
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dspace.entity.typePublication
relation.isAuthorOfPublication9c228fdd-1baa-43e9-b0c1-6bb751c00b28
relation.isAuthorOfPublication42fe20f8-5341-4c0e-8686-333ce816adfd
relation.isAuthorOfPublicationd3bfd5bf-8426-455b-bcc4-897ddb0d4c2e
relation.isAuthorOfPublication7d67c732-213a-47e0-82f8-81a897144cfa
relation.isAuthorOfPublication.latestForDiscovery9c228fdd-1baa-43e9-b0c1-6bb751c00b28

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
02_Martinikorena_FastRobust.pdf
Size:
2.5 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description: