A generalization of the Laplace's method for integrals

dc.contributor.authorLópez García, José Luis
dc.contributor.authorPagola Martínez, Pedro Jesús
dc.contributor.authorPalacios Herrero, Pablo
dc.contributor.departmentInstitute for Advanced Materials and Mathematics - INAMAT2en
dc.contributor.departmentEstadística, Informática y Matemáticases_ES
dc.contributor.departmentEstatistika, Informatika eta Matematikaeu
dc.contributor.funderUniversidad Publica de Navarra / Nafarroako Unibertsitate Publikoa
dc.date.accessioned2024-10-21T14:56:50Z
dc.date.available2024-10-21T14:56:50Z
dc.date.issued2024-08-05
dc.date.updated2024-10-21T14:46:26Z
dc.description.abstractIn López, Pagola and Perez (2009) we introduced a modification of the Laplace's method for deriving asymptotic expansions of Laplace integrals which simplifies the computations, giving explicit formulas for the coefficients of the expansion. On the other hand, motivated by the approximation of special functions with two asymptotic parameters, Nemes has generalized Laplace's method by considering Laplace integrals with two asymptotic parameters of a different asymptotic order. Nemes considers a linear dependence of the phase function on the two asymptotic parameters. In this paper, we investigate if the simplifying ideas introduced in López, Pagola and Perez (2009) for Laplace integrals with one large parameter may be also applied to the more general Laplace integrals considered in Nemes's theory. We show in this paper that the answer is yes, but moreover, we show that those simplifying ideas can be applied to more general Laplace integrals where the phase function depends on the large variable in a more general way, not necessarily in a linear form. We derive new asymptotic expansions for this more general kind of integrals with simple and explicit formulas for the coefficients of the expansion. Our theory can be applied to special functions with two or more large parameters of a different asymptotic order. We give some examples of special functions that illustrate the theory.en
dc.description.sponsorshipThe Universidad Pública de Navarra, plan de promoción de grupos de investigación, and the Ministerio de Ciencia, Innovación y Universidades, project PID2022-136441NB-I00, are acknowledged by their financial support.
dc.format.mimetypeapplication/pdfen
dc.identifier.citationLópez, J. L., Pagola, P. J., Palacios, P. (2024) A generalization of the Laplace's method for integrals. Applied Mathematics and Computation, 483(15), 1-20. https://doi.org/10.1016/j.amc.2024.128987.
dc.identifier.doi10.1016/j.amc.2024.128987
dc.identifier.issn0096-3003
dc.identifier.urihttps://academica-e.unavarra.es/handle/2454/52340
dc.language.isoeng
dc.publisherElsevier
dc.relation.ispartofApplied Mathematics and Computation 483, 2024, 128987
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2022-136441NB-I00/ES/
dc.relation.publisherversionhttps://doi.org/10.1016/j.amc.2024.128987
dc.rights© 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC license
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/
dc.subjectAsymptotic expansions of integralsen
dc.subjectLaplace's methoden
dc.subjectSpecial functionsen
dc.titleA generalization of the Laplace's method for integralsen
dc.typeinfo:eu-repo/semantics/article
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dspace.entity.typePublication
relation.isAuthorOfPublicatione6cd33c5-6d5e-455c-b8da-32a9702e16c8
relation.isAuthorOfPublication68ff8840-f80e-4119-ac1a-edfad578de07
relation.isAuthorOfPublication8793d0db-cf29-4d69-96be-387a3677fc64
relation.isAuthorOfPublication.latestForDiscoverye6cd33c5-6d5e-455c-b8da-32a9702e16c8

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Lopez_Generalization.pdf
Size:
769.53 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description: