Photonic chip breath analyzer
dc.contributor.author | Gallego Martínez, Elieser Ernesto | |
dc.contributor.author | Matías Maestro, Ignacio | |
dc.contributor.author | Ruiz Zamarreño, Carlos | |
dc.contributor.department | Ingeniería Eléctrica, Electrónica y de Comunicación | es_ES |
dc.contributor.department | Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza | eu |
dc.contributor.department | Institute of Smart Cities - ISC | en |
dc.contributor.funder | Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa | |
dc.date.accessioned | 2025-06-04T08:18:12Z | |
dc.date.available | 2025-06-04T08:18:12Z | |
dc.date.issued | 2025-06-03 | |
dc.date.updated | 2025-06-04T08:09:20Z | |
dc.description.abstract | This work introduces a novel single-package optical sensing device for multiple gas sensing, which is suitable for breath analysis applications. It is fabricated on a coverslip substrate via a sputtering technique and uses a planar waveguide configuration with lateral incidence of light. It features three sequentially ordered strips of different materials, which serve to increase the multivariate nature of the response of the device to different gases. For the proof-of-concept, the selected materials are indium tin oxide (ITO), tin oxide (SnO2), and chromium oxide III (Cr2O3), while the selected gases are nitric oxide (NO), acetylene (C2H2), and ammonia (NH3). The sensing mechanism is based on the hyperbolic mode resonance (HMR) effect, with the first-order resonance obtained for each strip located in the near infrared region. The multivariate response of the resonances and the correlation with the concentration of each gas allow training a machine learning (ML) model based on a nonlinear autoregressive neural network, enabling the accurate prediction of the concentration of each gas. The obtained limit of detection for all the gases was in the order of a few parts per billion. This innovative approach coined as the multivariate optical resonances spectroscopy demonstrates the potential of HMR-based optical sensors in combination with ML techniques for ultra-sensitive multi-gas detection applications using a single device. | en |
dc.description.sponsorship | This work was supported by the Agencia Estatal de Investigación research projects, Spain (Grant Nos. PID2019-106231RB-I00 and PDC2023-145831-I00), and by the Institute Smart Cities of the Public University of Navarra Ph.D. student grants, Spain (Grant No. 401). | |
dc.format.mimetype | application/pdf | en |
dc.identifier.citation | Gallego Martínez, E. E., Matías, I. R., Ruiz Zamarreño, C. (2025). Photonic chip breath analyzer. Photonic Sensors, 15(3), 1-17. https://doi.org/10.1007/s13320-025-0771-3. | |
dc.identifier.doi | 10.1007/s13320-025-0771-3 | |
dc.identifier.issn | 1674-9251 | |
dc.identifier.uri | https://academica-e.unavarra.es/handle/2454/54205 | |
dc.language.iso | eng | |
dc.publisher | SpringerOpen | |
dc.relation.ispartof | Photonic Sensors (2025), vol. 15, núm. 3, 250317 | |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-106231RB-I00/ES/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PDC2023-145831-I00/ES/ | |
dc.relation.publisherversion | https://doi.org/10.1007/s13320-025-0771-3 | |
dc.rights | © The Author(s) 2025. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License. | |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.subject | Gas sensor | en |
dc.subject | Hyperbolic mode resonance | en |
dc.subject | Multivariate optical resonances spectroscopy | en |
dc.title | Photonic chip breath analyzer | en |
dc.type | info:eu-repo/semantics/article | |
dc.type.version | info:eu-repo/semantics/publishedVersion | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 5a4d1790-5954-4d74-8cda-8c93734d91cb | |
relation.isAuthorOfPublication | bbb769e0-e56c-4b53-8e0b-cf33da20a35d | |
relation.isAuthorOfPublication | f85c4fed-8804-4e02-b746-0855066291e3 | |
relation.isAuthorOfPublication.latestForDiscovery | f85c4fed-8804-4e02-b746-0855066291e3 |
Files
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed to upon submission
- Description: