Photonic chip breath analyzer

dc.contributor.authorGallego Martínez, Elieser Ernesto
dc.contributor.authorMatías Maestro, Ignacio
dc.contributor.authorRuiz Zamarreño, Carlos
dc.contributor.departmentIngeniería Eléctrica, Electrónica y de Comunicaciónes_ES
dc.contributor.departmentIngeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritzaeu
dc.contributor.departmentInstitute of Smart Cities - ISCen
dc.contributor.funderUniversidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
dc.date.accessioned2025-06-04T08:18:12Z
dc.date.available2025-06-04T08:18:12Z
dc.date.issued2025-06-03
dc.date.updated2025-06-04T08:09:20Z
dc.description.abstractThis work introduces a novel single-package optical sensing device for multiple gas sensing, which is suitable for breath analysis applications. It is fabricated on a coverslip substrate via a sputtering technique and uses a planar waveguide configuration with lateral incidence of light. It features three sequentially ordered strips of different materials, which serve to increase the multivariate nature of the response of the device to different gases. For the proof-of-concept, the selected materials are indium tin oxide (ITO), tin oxide (SnO2), and chromium oxide III (Cr2O3), while the selected gases are nitric oxide (NO), acetylene (C2H2), and ammonia (NH3). The sensing mechanism is based on the hyperbolic mode resonance (HMR) effect, with the first-order resonance obtained for each strip located in the near infrared region. The multivariate response of the resonances and the correlation with the concentration of each gas allow training a machine learning (ML) model based on a nonlinear autoregressive neural network, enabling the accurate prediction of the concentration of each gas. The obtained limit of detection for all the gases was in the order of a few parts per billion. This innovative approach coined as the multivariate optical resonances spectroscopy demonstrates the potential of HMR-based optical sensors in combination with ML techniques for ultra-sensitive multi-gas detection applications using a single device.en
dc.description.sponsorshipThis work was supported by the Agencia Estatal de Investigación research projects, Spain (Grant Nos. PID2019-106231RB-I00 and PDC2023-145831-I00), and by the Institute Smart Cities of the Public University of Navarra Ph.D. student grants, Spain (Grant No. 401).
dc.format.mimetypeapplication/pdfen
dc.identifier.citationGallego Martínez, E. E., Matías, I. R., Ruiz Zamarreño, C. (2025). Photonic chip breath analyzer. Photonic Sensors, 15(3), 1-17. https://doi.org/10.1007/s13320-025-0771-3.
dc.identifier.doi10.1007/s13320-025-0771-3
dc.identifier.issn1674-9251
dc.identifier.urihttps://academica-e.unavarra.es/handle/2454/54205
dc.language.isoeng
dc.publisherSpringerOpen
dc.relation.ispartofPhotonic Sensors (2025), vol. 15, núm. 3, 250317
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-106231RB-I00/ES/
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PDC2023-145831-I00/ES/
dc.relation.publisherversionhttps://doi.org/10.1007/s13320-025-0771-3
dc.rights© The Author(s) 2025. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License.
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectGas sensoren
dc.subjectHyperbolic mode resonanceen
dc.subjectMultivariate optical resonances spectroscopyen
dc.titlePhotonic chip breath analyzeren
dc.typeinfo:eu-repo/semantics/article
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dspace.entity.typePublication
relation.isAuthorOfPublication5a4d1790-5954-4d74-8cda-8c93734d91cb
relation.isAuthorOfPublicationbbb769e0-e56c-4b53-8e0b-cf33da20a35d
relation.isAuthorOfPublicationf85c4fed-8804-4e02-b746-0855066291e3
relation.isAuthorOfPublication.latestForDiscoveryf85c4fed-8804-4e02-b746-0855066291e3

Files

Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
Gallego_PhotonicChip.pdf
Size:
2.25 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
Gallego_PhotonicChip_MatCompl.pdf
Size:
986.13 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description: