Publication:
Positron emission tomography image segmentation based on atanassov's intuitionistic fuzzy sets

dc.contributor.authorCouto, Pedro
dc.contributor.authorBento, Telmo
dc.contributor.authorBustince Sola, Humberto
dc.contributor.authorMelo-Pinto, Pedro
dc.contributor.departmentAutomática y Computaciónes_ES
dc.contributor.departmentAutomatika eta Konputazioaeu
dc.date.accessioned2022-08-04T10:50:32Z
dc.date.available2022-08-04T10:50:32Z
dc.date.issued2022
dc.date.updated2022-08-04T10:47:35Z
dc.description.abstractIn this paper, we present an approach to fully automate tumor delineation in positron emission tomography (PET) images. PET images play a major role in medicine for in vivo imaging in oncology (PET images are used to evaluate oncology patients, detecting emitted photons from a radiotracer localized in abnormal cells). PET image tumor delineation plays a vital role both in pre-and post-treatment stages. The low spatial resolution and high noise characteristics of PET images increase the challenge in PET image segmentation. Despite the difficulties and known limitations, several image segmentation approaches have been proposed. This paper introduces a new unsupervised approach to perform tumor delineation in PET images using Atanassov's intuitionistic fuzzy sets (A-IFSs) and restricted dissimilarity functions. Moreover, the implementation of this methodology is presented and tested against other existing methodologies. The proposed algorithm increases the accuracy of tumor delineation in PET images, and the experimental results show that the proposed method outperformed all methods tested.en
dc.description.sponsorshipThis research was funded by by National Funds by FCT-Portuguese Foundation for Science and Technology, under the project UIDB/04033/2020.en
dc.format.mimetypeapplication/pdfen
dc.identifier.citationCouto, P.; Bento, T.; Bustince, H.; Melo-Pinto, P.. (2022). Positron emission tomography image segmentation based on atanassov's intuitionistic fuzzy sets. Applied Sicences. 12,10.en
dc.identifier.doi10.3390/app12104865
dc.identifier.issn2076-3417
dc.identifier.urihttps://academica-e.unavarra.es/handle/2454/43698
dc.language.isoengen
dc.publisherMDPIen
dc.relation.ispartofApplied Sicences, 2022, 12 (10)en
dc.relation.publisherversionhttps://doi.org/10.3390/app12104865
dc.rights© 2022 by the authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) licenseen
dc.rights.accessRightsAcceso abierto / Sarbide irekiaes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessen
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectAIFS-sen
dc.subjectPET image segmentationen
dc.subjectTumor delineationen
dc.titlePositron emission tomography image segmentation based on atanassov's intuitionistic fuzzy setsen
dc.typeArtículo / Artikuluaes
dc.typeinfo:eu-repo/semantics/articleen
dc.type.versionVersión publicada / Argitaratu den bertsioaes
dc.type.versioninfo:eu-repo/semantics/publishedVersionen
dspace.entity.typePublication
relation.isAuthorOfPublication1bdd7a0e-704f-48e5-8d27-4486444f82c9
relation.isAuthorOfPublication.latestForDiscovery1bdd7a0e-704f-48e5-8d27-4486444f82c9

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Couto_PositronEmission_1659605107275_41667.pdf
Size:
339.1 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.78 KB
Format:
Item-specific license agreed to upon submission
Description: