Counterexamples in isometric theory of symmetric and greedy bases

dc.contributor.authorAlbiac Alesanco, Fernando José
dc.contributor.authorAnsorena, José L.
dc.contributor.authorBlasco, Óscar
dc.contributor.authorChu, Hùng Việt
dc.contributor.authorOikhberg, Timur
dc.contributor.departmentEstadística, Informática y Matemáticases_ES
dc.contributor.departmentEstatistika, Informatika eta Matematikaeu
dc.contributor.departmentInstitute for Advanced Materials and Mathematics - INAMAT2en
dc.contributor.funderUniversidad Pública de Navarra / Nafarroako Unibertsitate Publikoaes
dc.date.accessioned2024-05-07T19:04:49Z
dc.date.available2024-05-07T19:04:49Z
dc.date.issued2024
dc.date.updated2024-05-07T18:45:40Z
dc.description.abstractWe continue the study initiated in Albiac and Wojtaszczyk (2006) of properties related to greedy bases in the case when the constants involved are sharp, i.e., in the case when they are equal to 1. Our main goal here is to provide an example of a Banach space with a basis that satisfies Property (A) but fails to be 1-suppression unconditional, thus settling Problem 4.4 from Albiac and Ansorena (2017). In particular, our construction demonstrates that bases with Property (A) need not be 1-greedy even with the additional assumption that they are unconditional and symmetric. We also exhibit a finite-dimensional counterpart of this example, and show that, at least in the finite-dimensional setting, Property (A) does not pass to the dual. As a by-product of our arguments, we prove that a symmetric basis is unconditional if and only if it is total, thus generalizing the well-known result that symmetric Schauder bases are unconditional.en
dc.description.sponsorshipThe research of F. Albiac, J.L. Ansorena, and Ó. Blasco was funded by the Spanish Ministry for Science and Innovation under Grant PID2022-138342NB-I00 for Functional analysis methods in approximation theory and applications. F. Albiac also acknowledges the support of the Spanish Ministry for Science and Innovation under Grant PID2019-107701GB-I00 for Operators, lattices, and structure of Banach spaces. The University of Illinois partially supported the work of H. V. Chu and T. Oikhberg via Campus Research Board award 23026. Open Access funding provided by Universidad Pública de Navarra.en
dc.format.mimetypeapplication/pdfen
dc.identifier.citationAlbiac, F., Ansorena, J. L., Blasco, Ó., Chu, H. V., Oikhberg, T. (2024) Counterexamples in isometric theory of symmetric and greedy bases. Journal of Approximation Theory, 297, 1-20. https://doi.org/10.1016/j.jat.2023.105970.en
dc.identifier.doi10.1016/j.jat.2023.105970
dc.identifier.issn0021-9045
dc.identifier.urihttps://academica-e.unavarra.es/handle/2454/48077
dc.language.isoengen
dc.publisherElsevieren
dc.relation.ispartofJournal of Approximation Theory 297, 2024,105970en
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2022-138342NB-I00/ES/
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-107701GB-I00/ES/
dc.relation.publisherversionhttps://doi.org/10.1016/j.jat.2023.105970
dc.rights© 2023 The Author(s). This is an open access article under the CC BY license.en
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectGreedy basisen
dc.subjectProperty (A)en
dc.subjectSuppression unconditional basisen
dc.subjectSymmetric basisen
dc.subjectThresholding greedy algorithmen
dc.titleCounterexamples in isometric theory of symmetric and greedy basesen
dc.typeinfo:eu-repo/semantics/article
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dspace.entity.typePublication
relation.isAuthorOfPublication3a702006-6ba1-41ba-93bf-ea9fee1de239
relation.isAuthorOfPublication.latestForDiscovery3a702006-6ba1-41ba-93bf-ea9fee1de239

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Albiac_CounterexamplesIsometric.pdf
Size:
379.68 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.78 KB
Format:
Item-specific license agreed to upon submission
Description: