A review of estimation of distribution algorithms in bioinformatics

dc.contributor.authorArmañanzas, Rubén
dc.contributor.authorInza, Iñaki
dc.contributor.authorSantana, Roberto
dc.contributor.authorSaeys, Yvan
dc.contributor.authorFlores, Jose Luis
dc.contributor.authorLozano, José Antonio
dc.contributor.authorPeer, Yves van de
dc.contributor.authorBlanco Gómez, Rosa
dc.contributor.authorRobles, Victor
dc.contributor.authorBielza, Concha
dc.contributor.authorLarrañaga, Pedro
dc.contributor.departmentEstadística e Investigación Operativaes_ES
dc.contributor.departmentEstatistika eta Ikerketa Operatiboaeu
dc.date.accessioned2015-09-30T07:35:25Z
dc.date.available2015-09-30T07:35:25Z
dc.date.issued2008
dc.description.abstractEvolutionary search algorithms have become an essential asset in the algorithmic toolbox for solving high-dimensional optimization problems in across a broad range of bioinformatics problems. Genetic algorithms, the most well-known and representative evolutionary search technique, have been the subject of the major part of such applications. Estimation of distribution algorithms (EDAs) offer a novel evolutionary paradigm that constitutes a natural and attractive alternative to genetic algorithms. They make use of a probabilistic model, learnt from the promising solutions, to guide the search process. In this paper, we set out a basic taxonomy of EDA techniques, underlining the nature and complexity of the probabilistic model of each EDA variant. We review a set of innovative works that make use of EDA techniques to solve challenging bioinformatics problems, emphasizing the EDA paradigm's potential for further research in this domain.en
dc.description.sponsorshipThis work has been partially supported by the 2007–2012 Etortek, Saiotek and Research Group (IT-242-07) programs (Basque Government), TIN2005-03824 and Consolider Ingenio 2010-CSD2007-00018 projects (Spanish Ministry of Education and Science) and the COMBIOMED network in computational biomedicine (Carlos III Health Institute). R. Armañanzas is supported by Basque Government grant AE-BFI-05/430.en
dc.format.mimetypeapplication/pdfen
dc.identifier.doi10.1186/1756-0381-1-6
dc.identifier.issn1756-0381
dc.identifier.urihttps://academica-e.unavarra.es/handle/2454/18325
dc.language.isoengen
dc.publisherBioMed Centralen
dc.relation.ispartofBioData Mining 2008, 1:6en
dc.relation.publisherversionhttps://dx.doi.org/10.1186/1756-0381-1-6
dc.rights© 2008 Armañanzas et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.en
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by/2.0/
dc.subjectEstimation of distribution algorithmsen
dc.subjectBioinformaticsen
dc.titleA review of estimation of distribution algorithms in bioinformaticsen
dc.typeinfo:eu-repo/semantics/article
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dspace.entity.typePublication
relation.isAuthorOfPublication01ee4e6b-5d15-405b-945b-912d3d55a7e0
relation.isAuthorOfPublication.latestForDiscovery01ee4e6b-5d15-405b-945b-912d3d55a7e0

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ReviewEstimation.pdf
Size:
330 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description: