Embeddability of ℓp and bases in Lipschitz free p-spaces for 0 < p ≤ 1

Date

2020

Authors

Ansorena, José L.
Cúth, Marek
Doucha, Michal

Director

Publisher

Elsevier
Acceso abierto / Sarbide irekia
Artículo / Artikulua
Versión aceptada / Onetsi den bertsioa

Project identifier

  • ES/1PE/MTM2016-76808-P/
Impacto
No disponible en Scopus

Abstract

Our goal in this paper is to continue the study initiated by the authors in of the geometry of the Lipschitz free p-spaces over quasimetric spaces for 0 < p ≤ 1, denoted Fp(M). Here we develop new techniques to show that, by analogy with the case p = 1, the space p embeds isomorphically in Fp(M) for 0 < p < 1. Going further we see that despite the fact that, unlike the case p = 1, this embedding need not be complemented in general, complementability of p in a Lipschitz free p-space can still be attained by imposing certain natural restrictions to M. As a by-product of our discussion on bases in Fp([0, 1]), we obtain examples of p-Banach spaces for p < 1 that are not based on a trivial modification of Banach spaces, which possess a basis but fail to have an unconditional basis.

Description

Keywords

Quasimetric space, Quasi-Banach space, Lipschitz free p-space, Embedding of ℓp

Department

Estatistika, Informatika eta Matematika / Institute for Advanced Materials and Mathematics - INAMAT2 / Estadística, Informática y Matemáticas

Faculty/School

Degree

Doctorate program

item.page.cita

item.page.rights

© 2019 Elsevier Inc. This manuscript version is made available under the CC-BY-NC-ND 4.0.

Licencia

Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.