Solving the stochastic team orienteering problem: comparing simheuristics with the sample average approximation method

dc.contributor.authorPanadero, Javier
dc.contributor.authorJuan, Ángel A.
dc.contributor.authorGhorbani, Elnaz
dc.contributor.authorFaulín Fajardo, Javier
dc.contributor.authorPagès-Bernaus, Adela
dc.contributor.departmentEstadística, Informática y Matemáticases_ES
dc.contributor.departmentEstatistika, Informatika eta Matematikaeu
dc.contributor.departmentInstitute of Smart Cities - ISCen
dc.date.accessioned2023-05-08T14:54:13Z
dc.date.available2023-05-08T14:54:13Z
dc.date.issued2023
dc.date.updated2023-05-08T14:41:46Z
dc.description.abstractThe team orienteering problem (TOP) is anNP-hardoptimization problem with an increasing number of po-tential applications in smart cities, humanitarian logistics, wildfire surveillance, etc. In the TOP, a fixed fleetof vehicles is employed to obtain rewards by visiting nodes in a network. All vehicles share common originand destination locations. Since each vehicle has a limitation in time or traveling distance, not all nodes inthe network can be visited. Hence, the goal is focused on the maximization of the collected reward, takinginto account the aforementioned constraints. Most of the existing literature on the TOP focuses on its de-terministic version, where rewards and travel times are assumed to be predefined values. This paper focuseson a more realistic TOP version, where travel times are modeled as random variables, which introduces reli-ability issues in the solutions due to the route-length constraint. In order to deal with these complexities, wepropose a simheuristic algorithm that hybridizes biased-randomized heuristics with a variable neighborhoodsearch and MCS. To test the quality of the solutions generated by the proposed simheuristic approach, weemploy the well-known sample average approximation (SAA) method, as well as a combination model thathybridizes the metaheuristic used in the simheuristic approach with the SAA algorithm. The results showthat our proposed simheuristic outperforms the SAA and the hybrid model both on the objective functionvalues and computational time.en
dc.description.sponsorshipThis work has been partially supported by the Spanish Ministry of Science, Innovation, and Universities (PID2019-111100RB-C21/C22/AEI/10.13039/501100011033). Similarly, we appreciate the financial support of the Barcelona City Council and “La Caixa” (21S09355-001).en
dc.format.mimetypeapplication/pdfen
dc.identifier.citationPanadero, J., Juan, A. A., Ghorbani, E., Faulin, J., & Pagès‐Bernaus, A. (2023). Solving the stochastic team orienteering problem: Comparing simheuristics with the sample average approximation method. International Transactions in Operational Research, itor.13302. https://doi.org/10.1111/itor.13302en
dc.identifier.doi10.1111/itor.13302
dc.identifier.issn0969-6016
dc.identifier.urihttps://academica-e.unavarra.es/handle/2454/45227
dc.language.isoengen
dc.publisherWileyen
dc.relation.ispartofInternational Transactions in Operational Research. 0 (2023)en
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-111100RB-C21/ES/
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-111100RB-C22/ES/
dc.relation.publisherversionhttps://doi.org/10.1111/itor.13302
dc.rights© 2023 The Authors. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.en
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectTeam orienteering problemen
dc.subjectRandom travel timesen
dc.subjectBiased-randomized algorithmsen
dc.subjectSimheuristicsen
dc.subjectSample average approximationen
dc.titleSolving the stochastic team orienteering problem: comparing simheuristics with the sample average approximation methoden
dc.typeinfo:eu-repo/semantics/article
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dspace.entity.typePublication
relation.isAuthorOfPublication2f9b6dfd-9ac6-42b0-bff1-82079b8a03b8
relation.isAuthorOfPublication.latestForDiscovery2f9b6dfd-9ac6-42b0-bff1-82079b8a03b8

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Panadero_SolvingStochastic.pdf
Size:
1.27 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.78 KB
Format:
Item-specific license agreed to upon submission
Description: