Publication:
Masked least-squares averaging in processing of scanning-EMG recordings with multiple-discharges

dc.contributor.authorCorera Orzanco, Íñigo
dc.contributor.authorMalanda Trigueros, Armando
dc.contributor.authorRodríguez Falces, Javier
dc.contributor.authorNavallas Irujo, Javier
dc.contributor.departmentIngeniería Eléctrica y Electrónicaes_ES
dc.contributor.departmentIngeniaritza Elektrikoa eta Elektronikoaeu
dc.date.accessioned2022-04-27T06:40:56Z
dc.date.available2022-04-27T06:40:56Z
dc.date.issued2020
dc.description.abstractRemoving artifacts from nearby motor units is one of the main objectives when processing scanning-EMG recordings. Methods such as median filtering or masked least-squares smoothing (MLSS) can be used to eliminate artifacts in recordings with just one discharge of the motor unit potential (MUP) at each location. However, more effective artifact removal can be achieved if several discharges per position are recorded. In this case, processing usually involves averaging the discharges available at each position and then applying a median filter in the spatial dimension. The main drawback of this approach is that the median filter tends to distort the signal waveform. In this paper, we present a new algorithm that operates on multiple discharges simultaneously and in the spatial dimension. We refer to this algorithm as the multi masked least-squares smoothing (MMLSS) algorithm: an extension of the MLSS algorithm for the case of multiple discharges. The algorithm is tested using simulated scanning-EMG signals in different recording conditions, i.e., at different levels of muscle contraction and for different numbers of discharges per position. Results demonstrate that the algorithm eliminates artifacts more effectively than any previously available method and does so without distorting the waveform of the signal.en
dc.description.sponsorshipThis work has been supported by the Spanish Ministry of Science and Innovation under the project PID2019-109062RB-I00.en
dc.format.extent25 p.
dc.format.mimetypeapplication/pdfen
dc.identifier.doi10.1007/s11517-020-02274-x
dc.identifier.issn0140-0118
dc.identifier.urihttps://academica-e.unavarra.es/handle/2454/42811
dc.language.isoengen
dc.publisherSpringeren
dc.relation.ispartofMedical and Biological Engineering and Computing, 58, 3063–3073 (2020).en
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-109062RB-I00/ES/en
dc.relation.publisherversionhttps://doi.org/10.1007/s11517-020-02274-x
dc.rights© International Federation for Medical and Biological Engineering 2020en
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessen
dc.rights.accessRightsAcceso abierto / Sarbide irekiaes
dc.subjectElectromyographyen
dc.subjectScanning-EMGen
dc.subjectSignal processingen
dc.subjectMotor uniten
dc.titleMasked least-squares averaging in processing of scanning-EMG recordings with multiple-dischargesen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeArtículo / Artikuluaes
dc.type.versioninfo:eu-repo/semantics/acceptedVersionen
dc.type.versionVersión aceptada / Onetsi den bertsioaes
dspace.entity.typePublication
relation.isAuthorOfPublication43b5705c-8c22-4742-9de1-ff22df30598f
relation.isAuthorOfPublication14bdde9e-ab9d-462d-87c3-7da2c7e13976
relation.isAuthorOfPublication8ebfa8e7-2a2b-41eb-a0c2-f82e9b6f39dc
relation.isAuthorOfPublication9650a6c3-5f76-4005-9979-c140061b5e3c
relation.isAuthorOfPublication.latestForDiscovery43b5705c-8c22-4742-9de1-ff22df30598f

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Corera_MaskedLeast.pdf
Size:
3.3 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description: