Exploring the relationships between data complexity and classification diversity in ensembles
dc.contributor.author | Formentín Garcia, Nathan | |
dc.contributor.author | Tiggeman, Frederico | |
dc.contributor.author | Borges, Eduardo N. | |
dc.contributor.author | Lucca, Giancarlo | |
dc.contributor.author | Santos, Helida | |
dc.contributor.author | Pereira Dimuro, Graçaliz | |
dc.contributor.department | Estadística, Informática y Matemáticas | es_ES |
dc.contributor.department | Estatistika, Informatika eta Matematika | eu |
dc.date.accessioned | 2022-09-21T12:07:24Z | |
dc.date.available | 2022-09-21T12:07:24Z | |
dc.date.issued | 2021 | |
dc.date.updated | 2022-09-21T11:50:49Z | |
dc.description.abstract | Several classification techniques have been proposed in the last years. Each approach is best suited for a particular classification problem, i.e., a classification algorithm may not effectively or efficiently recognize some patterns in complex data. Selecting the best-tuned solution may be prohibitive. Methods for combining classifiers have also been proposed aiming at improving the generalization ability and classification results. In this paper, we analyze geometrical features of the data class distribution and the diversity of the base classifiers to understand better the performance of an ensemble approach based on stacking. The experimental evaluation was conducted using 32 real datasets, twelve data complexity measures, five diversity measures, and five heterogeneous classification algorithms. The results show that stacked generalization outperforms the best individual base classifier when there is a combination of complex and imbalanced data with diverse predictions among weak learners. | en |
dc.description.sponsorship | This study was supported by CAPES Financial Code 001, PNPD/CAPES (464880/2019-00), CNPq (301618/2019-4), and FAPERGS (19/2551-0001279- 9, 19/2551-0001660). | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.citation | Garcia, N.; Tiggeman, F.; Borges, E.; Lucca, G.; Santos, H. and Dimuro, G. (2021). Exploring the Relationships between Data Complexity and Classification Diversity in Ensembles. In Proceedings of the 23rd International Conference on Enterprise Information Systems - Volume 1: ICEIS, ISBN 978-989-758-509-8; ISSN 2184-4992, pages 652-659. DOI: 10.5220/0010440006520659 | en |
dc.identifier.doi | 10.5220/0010440006520659 | |
dc.identifier.uri | https://academica-e.unavarra.es/handle/2454/44108 | |
dc.language.iso | eng | en |
dc.publisher | SciTePress | en |
dc.relation.ispartof | Filipe, F.; Smialek, M.; Brodsky, A.; Hammoudi, S. (Eds.): Proceedings of the 23rd International Conference on Enterprise Information Systems (ICEIS 2021). Scitepress, 2021, pp. 452 - 462, 978-989-758-509-8 | en |
dc.relation.publisherversion | https://doi.org/10.5220/0010440006520659 | |
dc.rights | © 2021 by SCITEPRESS-Science and Technology Publications, Lda. Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) | en |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | |
dc.subject | Machine learning ensembles | en |
dc.subject | Complexity measures | en |
dc.subject | Diversity measures | en |
dc.title | Exploring the relationships between data complexity and classification diversity in ensembles | en |
dc.type | info:eu-repo/semantics/conferenceObject | |
dc.type.version | info:eu-repo/semantics/publishedVersion | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 8c79084b-8af8-4913-a958-52ca175bd136 | |
relation.isAuthorOfPublication | 4eb4bdb2-e3c9-46a2-983f-dfc0dfe20e54 | |
relation.isAuthorOfPublication.latestForDiscovery | 4eb4bdb2-e3c9-46a2-983f-dfc0dfe20e54 |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Formentin_ExploringRelationships_1663760809294_14587.pdf
- Size:
- 412.48 KB
- Format:
- Adobe Portable Document Format
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.78 KB
- Format:
- Item-specific license agreed to upon submission
- Description: