FUZZ-EQ: a data equalizer for boosting the discrimination power of fuzzy classifiers

dc.contributor.authorUriz Martín, Mikel Xabier
dc.contributor.authorElkano Ilintxeta, Mikel
dc.contributor.authorBustince Sola, Humberto
dc.contributor.authorGalar Idoate, Mikel
dc.contributor.departmentEstatistika, Informatika eta Matematikaeu
dc.contributor.departmentInstitute of Smart Cities - ISCen
dc.contributor.departmentEstadística, Informática y Matemáticases_ES
dc.contributor.funderUniversidad Pública de Navarra / Nafarroako Unibertsitate Publikoa, PJUPNA13es
dc.date.accessioned2021-02-19T08:12:00Z
dc.date.available2022-08-01T23:00:15Z
dc.date.issued2020
dc.description.abstractThe definition of linguistic terms is a critical part of the construction of any fuzzy classifier. Fuzzy partitioning methods (FPMs) range from simple uniform partitioning to sophisticated optimization algorithms. In this paper we present FUZZ-EQ, a preprocessing algorithm that facilitates the construc-tion of meaningful fuzzy partitions regardless of the FPM used. The proposed approach is radically different from any existing FPM: instead of adjusting the fuzzy sets to the training data, FUZZ-EQ adjusts the training data to a hypothetical uniform partition before applying any FPM. To do so, the original data distribution is transformed into a uniform distribution by applying the probability integral transform. FUZZ-EQ allows FPMs to provide classifiers with more granularity on high density regions, increasing the overall discrimination capability. Additionally, we describe the procedure to reverse this transformation and recover the interpretability of linguistic terms. To assess the effectiveness of our proposal, we conducted an extensive empirical study consisting of 41 classification tasks and 9 fuzzy classifiers with different FPMs, rule induction algorithms, and rule structures. We also tested the scalability of FUZZ-EQ in Big Data classification problems such as HIGGS, with 11 million examples. Experimental results reveal that FUZZ-EQ significantly boosted the classification performance of those classifiers using the same linguistic terms for all rules, including state-of-the-art classifiers such as FARC-HD or IVTURS.en
dc.description.sponsorshipThis work has been supported by the Spanish Ministry of Science and Technology under the project TIN2016-77356-P and the Public University of Navarre (project PJUPNA13 and predoctoral fellowship).en
dc.embargo.lift2022-08-01
dc.embargo.terms2022-08-01
dc.format.extent25 p.
dc.format.mimetypeapplication/pdfen
dc.identifier.doi10.1016/j.asoc.2020.106399
dc.identifier.issn1568-4946
dc.identifier.urihttps://academica-e.unavarra.es/handle/2454/39206
dc.language.isoengen
dc.publisherElsevieren
dc.relation.ispartofApplied Soft Computing, 2020, 93, 106399en
dc.relation.projectIDinfo:eu-repo/grantAgreement/ES/1PE/TIN2016-77356-P/
dc.relation.publisherversionhttps://doi.org/10.1016/j.asoc.2020.106399
dc.rights© 2020 Elsevier B.V. This manuscript version is made available under the CC-BY-NC-ND 4.0en
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectFuzzy partitioningen
dc.subjectPreprocessingen
dc.subjectFuzzy rule-based classification systemsen
dc.subjectFuzzy decision treesen
dc.subjectProbability integral transformen
dc.subjectQuantile functionen
dc.titleFUZZ-EQ: a data equalizer for boosting the discrimination power of fuzzy classifiersen
dc.typeinfo:eu-repo/semantics/article
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dspace.entity.typePublication
relation.isAuthorOfPublicationa3183ffc-8d9f-4a63-8b70-e3e733e23f6b
relation.isAuthorOfPublication6c547bbd-a705-4b30-bd23-5c905380eabe
relation.isAuthorOfPublication1bdd7a0e-704f-48e5-8d27-4486444f82c9
relation.isAuthorOfPublication44c7a308-9c21-49ef-aa03-b45c2c5a06fd
relation.isAuthorOfPublication.latestForDiscoverya3183ffc-8d9f-4a63-8b70-e3e733e23f6b

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2020100489_Uriz_FUZZEQ.pdf
Size:
1.28 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description: