Optimal monotonicity-preserving perturbations of a given Runge–Kutta method

dc.contributor.authorHigueras Sanz, Inmaculada
dc.contributor.authorKetcheson, David I.
dc.contributor.authorKocsis, Tihamér A.
dc.contributor.departmentIngeniería Matemática e Informáticaes_ES
dc.contributor.departmentMatematika eta Informatika Ingeniaritzaeu
dc.date.accessioned2020-11-11T10:24:56Z
dc.date.available2020-11-11T10:24:56Z
dc.date.issued2018
dc.description.abstractPerturbed Runge–Kutta methods (also referred to as downwind Runge–Kutta methods) can guarantee monotonicity preservation under larger step sizes relative to their traditional Runge–Kutta counterparts. In this paper we study the question of how to optimally perturb a given method in order to increase the radius of absolute monotonicity (a.m.). We prove that for methods with zero radius of a.m., it is always possible to give a perturbation with positive radius. We first study methods for linear problems and then methods for nonlinear problems. In each case, we prove upper bounds on the radius of a.m., and provide algorithms to compute optimal perturbations. We also provide optimal perturbations for many known methods.en
dc.description.sponsorshipInmaculada Higueras was supported by Ministerio de Economía y Competividad, Spain, Projects MTM2014-53178-P and MTM2016-77735-C3-2-P. David I. Ketcheson and Tihamér A. Kocsis were supported by KAUST Award No. FIC/2010/05-2000000231. Tihamér A. Kocsis was also supported by TÁMOP-4.2.2.A-11/1/KONV-2012-0012: Basic research for the development of hybrid and electric vehicles, supported by the Hungarian Government and co-financed by the European Social Fund.en
dc.format.extent30 p.
dc.format.mimetypeapplication/pdfen
dc.identifier.doi10.1007/s10915-018-0664-3
dc.identifier.issn1573-7691
dc.identifier.urihttps://academica-e.unavarra.es/handle/2454/38630
dc.language.isoengen
dc.publisherSpringeren
dc.relation.ispartofJournal of Scientific Computing, 2018, 76, 1337-1369en
dc.relation.projectIDinfo:eu-repo/grantAgreement/MINECO//MTM2014-53178-P/ES/
dc.relation.projectIDinfo:eu-repo/grantAgreement/ES/1PE/MTM2016-77735/
dc.relation.publisherversionhttps://doi.org/10.1007/s10915-018-0664-3
dc.rights© Springer Science+Business Media, LLC, part of Springer Nature 2018en
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.subjectStrong stability preservingen
dc.subjectMonotonicityen
dc.subjectRunge–Kutta methodsen
dc.subjectTime discretizationen
dc.titleOptimal monotonicity-preserving perturbations of a given Runge–Kutta methoden
dc.typeinfo:eu-repo/semantics/article
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dspace.entity.typePublication
relation.isAuthorOfPublication2bbd2efb-9302-4135-804e-38cb641598c7
relation.isAuthorOfPublication.latestForDiscovery2bbd2efb-9302-4135-804e-38cb641598c7

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
07_Higueras_OptimalMonotonicity.pdf
Size:
538.5 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description: