Multivariate Bayesian spatio-temporal P-spline models to analyze crimes against women
dc.contributor.author | Vicente Fuenzalida, Gonzalo | |
dc.contributor.author | Goicoa Mangado, Tomás | |
dc.contributor.author | Ugarte Martínez, María Dolores | |
dc.contributor.department | Estatistika, Informatika eta Matematika | eu |
dc.contributor.department | Institute for Advanced Materials and Mathematics - INAMAT2 | en |
dc.contributor.department | Estadística, Informática y Matemáticas | es_ES |
dc.date.accessioned | 2022-08-04T07:58:08Z | |
dc.date.available | 2022-08-04T07:58:08Z | |
dc.date.issued | 2021 | |
dc.date.updated | 2022-08-04T07:23:40Z | |
dc.description.abstract | Univariate spatio-temporal models for areal count data have received great attention in recent years for estimating risks. However, models for studying multivariate responses are less commonly used mainly due to the computational burden. In this article, multivariate spatio-temporal P-spline models are proposed to study different forms of violence against women. Modeling distinct crimes jointly improves the precision of estimates over univariate models and allows to compute correlations among them. The correlation between the spatial and the temporal patterns may suggest connections among the different crimes that will certainly benefit a thorough comprehension of this problem that affects millions of women around the world. The models are fitted using integrated nested Laplace approximations and are used to analyze four distinct crimes against women at district level in the Indian state of Maharashtra during the period 2001-2013. | en |
dc.description.sponsorship | Project MTM2017-82553-R (AEI/FEDER, UE) and Project PID2020-113125RB-I00/MCIN/AEI/10.130 39/501100011033. | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.citation | Vicente, G.; Goicoa, T.; Ugarte, M. D.. (2021). Multivariate Bayesian spatio-temporal P-spline models to analyze crimes against women. Biostatistics . | en |
dc.identifier.doi | 10.1093/biostatistics/kxab042 | |
dc.identifier.issn | 1465-4644 | |
dc.identifier.uri | https://academica-e.unavarra.es/handle/2454/43670 | |
dc.language.iso | eng | en |
dc.publisher | Oxford University Press | en |
dc.relation.ispartof | Biostatistics, 2021 | en |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-82553-R/ES/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-113125RB-I00/ES/ | |
dc.relation.publisherversion | https://doi.org/10.1093/biostatistics/kxab042 | |
dc.rights | © The Author 2021. This is an Open Access article distributed under the terms of the Creative Commons Attribution License | en |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.subject | Bayesian inference | en |
dc.subject | Gender-based violence | en |
dc.subject | INLA | en |
dc.subject | Smoothing | en |
dc.subject | Spatio-temporal patterns | en |
dc.title | Multivariate Bayesian spatio-temporal P-spline models to analyze crimes against women | en |
dc.type | info:eu-repo/semantics/article | |
dc.type.version | info:eu-repo/semantics/publishedVersion | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 77ba75f3-a30d-4f01-8cc5-9de6d3a10d8d | |
relation.isAuthorOfPublication | e87ff19e-9d36-4286-989b-cafd391dff9d | |
relation.isAuthorOfPublication.latestForDiscovery | 77ba75f3-a30d-4f01-8cc5-9de6d3a10d8d |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Vicente_MultivariateBayesian_1659593454638_41655.pdf
- Size:
- 2.83 MB
- Format:
- Adobe Portable Document Format
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.78 KB
- Format:
- Item-specific license agreed to upon submission
- Description: