Publication:
The swallowtail integral in the highly oscillatory region II

dc.contributor.authorFerreira González, Chelo
dc.contributor.authorLópez García, José Luis
dc.contributor.authorPérez Sinusía, Ester
dc.contributor.departmentEstatistika, Informatika eta Matematikaeu
dc.contributor.departmentInstitute for Advanced Materials and Mathematics - INAMAT2en
dc.contributor.departmentEstadística, Informática y Matemáticases_ES
dc.contributor.funderUniversidad Pública de Navarra / Nafarroako Unibertsitate Publikoaes
dc.date.accessioned2021-09-06T12:27:35Z
dc.date.available2021-09-06T12:27:35Z
dc.date.issued2020
dc.description.abstractWe analyze the asymptotic behavior of the swallowtail integral R ∞ −∞ e i(t 5+xt3+yt2+zt)dt for large values of |y| and bounded values of |x| and |z|. We use the simpli ed saddle point method introduced in [López et al., 2009]. With this method, the analysis is more straightforward than with the standard saddle point method and it is possible to derive complete asymptotic expansions of the integral for large |y| and xed x and z. There are four Stokes lines in the sector (−π, π] that divide the complex y−plane in four sectors in which the swallowtail integral behaves di erently when |y| is large. The asymptotic approximation is the sum of two asymptotic series whose terms are elementary functions of x, y and z. One of them is of Poincaré type and is given in terms of inverse powers of y 1/2 . The other one is given in terms of an asymptotic sequence of the order O(y −n/9 ) when |y| → ∞, and it is multiplied by an exponential factor that behaves di erently in the four mentioned sectors. Some numerical experiments illustrate the accuracy of the approximation.en
dc.description.sponsorshipThis research was supported by the Ministerio de Economia y Competitividad (MTM2017-83490-P). The Universidad Publica de Navarra is acknowledged by its financial support.en
dc.format.extent13 p.
dc.format.mimetypeapplication/pdfen
dc.identifier.doi10.1553/etna_vol52s88
dc.identifier.issn1068-9613
dc.identifier.urihttps://academica-e.unavarra.es/handle/2454/40433
dc.language.isoengen
dc.publisherKent State Universityen
dc.publisherJohann Radon Institute (RICAM)en
dc.relation.ispartofElectronic Transactions on Numerical Analysis, 52, 88-99en
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-83490-P/ES/en
dc.relation.publisherversionhttps://doi.org/10.1553/etna_vol52s88
dc.rights© 2020, Kent State Universityen
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.subjectSwallowtail integralen
dc.subjectAsymptotic expansionsen
dc.subjectModified saddle point methoden
dc.titleThe swallowtail integral in the highly oscillatory region IIen
dc.typeinfo:eu-repo/semantics/article
dc.type.versioninfo:eu-repo/semantics/acceptedVersionen
dc.type.versionVersión aceptada / Onetsi den bertsioaes
dspace.entity.typePublication
relation.isAuthorOfPublication8b28fd50-66f4-431e-a219-43d8c02bb077
relation.isAuthorOfPublicatione6cd33c5-6d5e-455c-b8da-32a9702e16c8
relation.isAuthorOfPublication93f891c7-529d-4972-8759-9d943c60949c
relation.isAuthorOfPublication.latestForDiscovery8b28fd50-66f4-431e-a219-43d8c02bb077

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2021020313_Ferreira_SwallowtailIntegral_II.pdf
Size:
528.46 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description: