Publication:
Scalable Bayesian modeling for smoothing disease mapping risks in large spatial data sets using INLA

Date

2021

Director

Publisher

Elsevier
Acceso abierto / Sarbide irekia
Artículo / Artikulua
Versión publicada / Argitaratu den bertsioa

Project identifier

AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-82553-R/ES/recolecta

Abstract

Several methods have been proposed in the spatial statistics literature to analyse big data sets in continuous domains. However, new methods for analysing high-dimensional areal data are still scarce. Here, we propose a scalable Bayesian modelling approach for smoothing mortality (or incidence) risks in high-dimensional data, that is, when the number of small areas is very large. The method is implemented in the R add-on package bigDM and it is based on the idea of “divide and conquer“. Although this proposal could possibly be implemented using any Bayesian fitting technique, we use INLA here (integrated nested Laplace approximations) as it is now a well-known technique, computationally efficient, and easy for practitioners to handle. We analyse the proposal’s empirical performance in a comprehensive simulation study that considers two model-free settings. Finally, the methodology is applied to analyse male colorectal cancer mortality in Spanish municipalities showing its benefits with regard to the standard approach in terms of goodness of fit and computational time.

Description

Keywords

High-dimensional data, Hierarchical models, Mixture models, Spatial epidemiology

Department

Estadística, Informática y Matemáticas / Estatistika, Informatika eta Matematika / Institute for Advanced Materials and Mathematics - INAMAT2

Faculty/School

Degree

Doctorate program

item.page.cita

Orozco-Acosta, E., Adin, A., Ugarte, M.D. (2021) Scalable Bayesian modeling for smoothing disease mapping risks in large spatial data sets using INLA. Spatial Statistics, 41(100496), 1-17. https://doi.org/10.1016/j.spasta.2021.100496.

item.page.rights

© 2021 The Authors. This is an open access article under the CC BY-NC-ND license.

Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.